طراحی یک شبکه زنجیره تأمین بنزین پایدار و تاب‌آور تحت شرایط عدم قطعیت اختلال (مطالعه موردی: شبکه زنجیره تأمین بنزین استان خراسان رضوی)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 استاد، گروه مدیریت، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 دانشیار، گروه مدیریت، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

هدف: امروزه تحولات گسترده سیاسی، اقتصادی، اجتماعی و محیطی باعث شده است که طراحی شبکه زنجیره تأمین بنزین یکی از چالش‌های دولت‌ها شود و ابعاد مهم دیگری همچون پایداری و تاب‌آوری در طراحی این شبکه‌ ضرورت یابد. هدف از پژوهش حاضر ارائه یک مدل ریاضی طراحی شبکه زنجیره تأمین بنزین سه سطحی با در نظر گرفتن رویکردهای پایداری و تاب‌آوری به‌صورت هم‏زمان است.
روش: روش این پژوهش، از نوع بنیادی ـ کاربردی است و مدل ریاضی توسعه یافته در آن، یک مدل چند هدفه احتمالی دومرحله‌ای مبتنی بر سناریو است که ریسک‌های اختلال در زنجیره را در قالب سناریوهای احتمالی در نظر می‌گیرد. اختلال‌های در نظر گرفته شده در این پژوهش عبارت‌اند از: اختلال در تأمین به‌دلیل تخریب ظرفیت تولید پالایشگاه‌ها، کاهش واردات بنزین تحت تأثیر فشارهای سیاسی، تخریب تسهیلات ذخیره‌سازی و افزایش ناگهانی تقاضای برخی از نقاط. به‌منظور یافتن جواب‌های استوار در مقابل تغییرات ناشی از سناریوها، از روش بهینه‌سازی استوار آغزاف و برای یافتن جواب‌های کارای مدل چندهدفه از رویکرد ترابی ـ حسینی بهره برده شده است.
یافته‌ها: کمّی‌سازی رویکردهای پایداری شامل هزینه ایجاد شبکه، اثرهای زیست‌محیطی ناشی از انتشار گاز 2CO در اثر تولید و انتقال بنزین در شبکه و اثرهای اجتماعی توسعه شبکه بر بهبود فرصت‌های شغلی و ارتقای وضعیت اقتصادی مناطق محلی، یکی از  یافته‌های مهم این پژوهش است. یافته مهم دیگر این پژوهش، توسعه رویکردی کمّی برای بهینه‌سازی ابعاد مختلف تاب‌آوری شبکه، یعنی کیفیت طراحی، قابلیت‌های پیشگیرانه و قابلیت‌های واکنشی در مقابل این اختلال‌هاست.
نتیجه‌گیری: مدل پیشنهادی ضمن بهینه‌سازی کمّی هر سه بٌعد اقتصادی، اجتماعی و زیست‌محیطی شبکه زنجیره تأمین بنزین، قادر است تاب‌آوری شبکه را نیز در مقابل اختلال تقویت کند. از سوی دیگر، کارایی رویکرد پیشنهادی از طریق به‌کارگیری آن در مطالعه موردی شبکه زنجیره تأمین بنزین در استان خراسان رضوی نشان داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a Sustainable and Resilient Gasoline Supply Chain Network under Uncertainty (Case study: Gasoline Supply Chain Network of Khorasan Razavi Province)

نویسندگان [English]

  • Seyed Mohammad Khalili 1
  • Alireza Pooya 2
  • Mostafa Kazemi 2
  • Amir Mohammad Fakoor Saghih 3
1 Ph.D. Candidate, Department of Management, Faculty of Economics and Administrative sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Prof., Department of Management, Faculty of Economics and Administrative sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
3 Associate Prof., Department of Management, Faculty of Economics and Administrative sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Objective: Today, extensive political, economic, social, and environmental challenges have made designing the gas supply chain network one of the biggest concerns of governments, local states, and global companies. Due to the development of global regulations about environmental concerns, important issues such as sustainability and resilience are needed to be considered in building up supply chain networks. The purpose of this study is to present a mathematical model of a three-echelon gasoline supply chain network, as well as to consider sustainability and resilience approaches.
Methods: This is a fundamental and applied study. The mathematical model developed in this research is a two-stage scenario-based multi-objective stochastic one that considers the risks of chain disruption in the form of stochastic scenarios. The disruption considered in this study included supply disruption due to disruption of refinery production capacity, reduction of gasoline imports due to political pressures, disruption of storage facilities, and a demand surge in some customer zones. In order to find robust solutions against scenarios, the Aghezzaf robust optimization method was used, and to find efficient solutions. The Torabi-Hosseini approach was applied to the multi-objective model.
Results: Some of the most important findings of the present study were the quantification of sustainability measures, including the cost of network establishment, environmental effects of CO2 emissions due to the gasoline production and transmission in the network, and the social effects of the network development on the job opportunities, while improving the economic conditions of local areas. The development of a quantitative approach to optimizing various dimensions of the network resilience, including design quality besides the proactive-reactive capabilities against these disturbances were the other finding of this study. Proactive capabilities encompass the establishment of backup storage facilities in critical nodes of the chain and devising backup links for transporting gasoline from backup refineries to the disrupted facilities. In addition, fortification of critical facilities to be operable in the face of disruptions was another proactive option considered in the proposed mathematical model. Reactive capabilities included planning the recovery of disrupted storage tanks and gasoline pipelines.
Conclusion: The proposed model, that quantitatively optimizes all three aspects of sustainability, i.e., economic, social, and environmental, in the gasoline supply chain network, strengthens the network resilience against disruption. Besides, the applicability and efficiency of the proposed approach were shown through a real case study of the gasoline supply chain network design problem in the Khorasan Razavi province of Iran. The obtained results showed that the cost reduction in the whole network along with sustainability and resilience achievements were made in comparison with the current condition of the gasoline supply chain in Khorasan Razavi.

کلیدواژه‌ها [English]

  • Disruption
  • Resilience
  • Robust optimization
  • Supply chain management
  • Sustainability
اختیاری، مصطفی؛ زندیه، مصطفی؛ عالم تبریز، اکبر؛ ربیعه، مسعود. (1398). ارائه یک مدل برنامه‌ریزی دوسطحی برای زنجیره تأمین چند مرحله‌ای با تأکید بر قابلیت اطمینان در شرایط عدم قطعیت. مدیریت صنعتی، 11(2)، 177-206.‎
جوانبخت، محمد؛ حسینی، سید حسین؛ (1397). تحلیلی بر میزان آسیب پذیری شبکه ی خطوط انتقال نیروی استان خراسان رضوی در برابر زلزله. تحلیل فضایی مخاطرات محیطی، 6(3)، 15-26.
فتحی، محمدرضا؛ نصراللهی، مهدی؛ زمانیان، علی. (1398). مدل‌سازی ریاضی شبکه زنجیره تأمین پایدار در وضعیت عدم قطعیت و حل آن با استفاده از الگوریتم‌های فراابتکاری. مدیریت صنعتی، 11(4)، 621-652.‎
سنگبر، محمدعلی؛ صافی، محمدرضا؛ آذر، عادل؛ ربیعه، مسعود. (1400). ارائه چارچوبی کمّی برای نگاشت شناختی فازی لایه‌ای، با استفاده از رویکرد ترکیبی «نقشه خودسازمان‏ دهنده» و «تئوری گراف و رویکرد ماتریس»(SOM-GTMA). مدیریت صنعتی، 13(1)، 80-104.‎
گلستانی، شهرام، صدرزاده مقدم، سعید؛ عظیم‌زاده، صفیه. (1391). بهینه یابی حمل‏ونقل بنزین از پالایشگاه ها و مبادی ورودی به انبارهای اصلی شرکت نفت: مدل جریان شبکه. مطالعات اقتضاد انرژی، 9(32)، 95-124.
موسوی، مهسا؛ جمالی، غلامرضا؛ قربانپور، احمد. (1400). ارائه مدل بهینه‌سازی شبکه‎ زنجیره تأمین سبز ـ تاب‎ آور در صنایع سیمان. مدیریت صنعتی، 13(2)، 222-245.‎
 
References
Adenso‐Diaz, B., Mena, C., García‐Carbajal, S. & Liechty, M. (2012). The impact of supply network characteristics on reliability. Supply Chain Management: An International Journal, 17(3), 263-276.
Adhitya, A., Srinivasan, R. & Karimi, I. A. (2007). A model-based rescheduling framework for managing abnormal supply chain events. Computers & Chemical Engineering, 31(5), 496-518.
Aghezzaf, E.-H., Sitompul, C. & Najid, N. M. (2010). Models for robust tactical planning in multi-stage production systems with uncertain demands. Computers & Operations Research, 37(5), 880-889.
Akbari, M., Ghafoori, M., Moghaddas, N. H. & Lashkaripour, G. R. (2011). Seismic microzonation of Mashhad city, northeast Iran. Annals of geophysics, 54(4), 424-434.
Al-Othman, W. B., Lababidi, H., Alatiqi, I. M. & Al-Shayji, K. (2008). Supply chain optimization of petroleum organization under uncertainty in market demands and prices. European Journal of Operational Research, 189(3), 822-840.
Al-Qahtani, K. & Elkamel, A. (2008). Multisite facility network integration design and coordination: An application to the refining industry. Computers & Chemical Engineering, 32(10), 2189-2202.
Azaron, A., Brown, K., Tarim, S. A. & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116(1), 129-138.
Beheshtian, A., Donaghy, K. P., Geddes, R. R. & Rouhani, O. M. (2017). Planning resilient motor-fuel supply chain. International journal of disaster risk reduction, 24(6), 312-325.
Beiranvand, H., Ghazanfari, M., Sahebi, H. & Pishvaee, M. S. (2018). A robust crude oil supply chain design under uncertain demand and market price: A case study. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 73(66), 1-14.
Bidhandi, H. M., Yusuff, R. M., Ahmad, M. M. H. M. & Bakar, M. R. A. (2009). Development of a new approach for deterministic supply chain network design. European Journal of Operational Research, 198(1), 121-128.
Blackhurst, J., Craighead, C. W., Elkins, D. & Handfield, R. B. (2005). An empirically derived agenda of critical research issues for managing supply-chain disruptions. International Journal of Production Research, 43(19), 4067-4081.
British Petroleum Center. (2020). Annual energy outlook 2020. Washington, DC: Energy Information Administration.
Cardoso, S. R., Barbosa-Póvoa, A. P., Relvas, S. & Novais, A. Q. (2015). Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega, 56(1), 53-73.
Carvalho, H., Azevedo, S. G. & Cruz-Machado, V. (2014). Supply chain management resilience: a theory building approach. International Journal of Supply Chain and Operations Resilience, 1(1), 3-27.
Chen, J. (2014). Logistics network optimization of import crude oil in china based on genetic algorithm. Advanced Materials Research, 945-949(1), 3126-3129.
Chen, L. & Miller-Hooks, E. (2012). Resilience: an indicator of recovery capability in intermodal freight transport. Transportation Science, 46(1), 109-123.
Chowdhury, M. M. H. & Quaddus, M. (2017). Supply chain resilience: Conceptualization and scale development using dynamic capability theory. International Journal of Production Economics, 188(15), 185-204.
Cohen, M. A. & Moon, S. (1991). An integrated plant loading model with economies of scale and scope. European Journal of Operational Research, 50(3), 266-279.
Cordeau, J.-F., Pasin, F. & Solomon, M. M. (2006). An integrated model for logistics network design. Annals of operations Research, 144(1), 59-82.
Craighead, C. W., Blackhurst, J., Rungtusanatham, M. J. & Handfield, R. B. (2007). The severity of supply chain disruptions: design characteristics and mitigation capabilities. Decision Sciences, 38(1), 131-156.
Cui, L., Jin, Z., Li, Y. & Wang, Y. (2022). Effects of control mechanisms on supply chain resilience and sustainability performance. Australian Journal of Management, doi.org/10.1177/03128962211066532 (In press).
Dempster, M. A. H., Pedron, N. H., Medova, E., Scott, J. & Sembos, A. (2000). Planning logistics operations in the oil industry. Journal of the Operational Research Society, 51(11), 1271-1288.
Ekhtiari, M., Zandieh, M., Alem Tabriz, A. & Rabieh, M. (2019). Proposing a Bi-level Programming Model for Multi-echelon Supply Chain with an Emphasis on Reliability in Uncertainty. Industrial Management Journal, 11(2), 177-206. (in Persian)
Elhedhli, S. & Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport and Environment, 17(5), 370-379.
Escudero, L. F., Quintana, F. J. & Salmerón, J. (1999). CORO, a modeling and an algorithmic framework for oil supply, transformation and distribution optimization under uncertainty. European Journal of Operational Research, 114(3), 638-656.
Fahimnia, B., Jabbarzadeh, A. & Sarkis, J. (2018). Greening versus resilience: A supply chain design perspective. Transportation Research Part E: Logistics and Transportation Review, 119(1), 129-148.
Falasca, M., Zobel, C. W. & Cook, D. (2008). A decision support framework to assess supply chain resilience. Paper presented at the Proceedings of the 5th International ISCRAM Conference, May 4th-7th, Washington DC, USA, 596-605.
Fathi, M. R., Nasrollahi, M. & Zamanian, A. (2020). Mathematical Modeling of Sustainable Supply Chain Networks under Uncertainty and Solving It Using Metaheuristic Algorithms. Industrial Management Journal, 11(4), 621-652. (in Persian)
Fernandes, L. J., Relvas, S. & Barbosa-Póvoa, A. P. (2017, June). Downstream Petroleum Supply Chains’ Design and Planning-Contributions and Roadmap. In Congress of APDIO, the Portuguese Operational Research Society (87-99). Springer, Cham.
Finch, P. (2004). Supply chain risk management. Supply Chain Management: An International Journal, 9(2), 183-196.
Foroozesh, N., Karimi, B. & Mousavi, S. M. (2022). Green-resilient supply chain network design for perishable products considering route risk and horizontal collaboration under robust interval-valued type-2 fuzzy uncertainty: A case study in food industry. Journal of Environmental Management307, 114470.
Frota Neto, J. Q., Bloemhof-Ruwaard, J. M., Van Nunen, J. & Van Heck, E. (2008). Designing and evaluating sustainable logistics networks. International Journal of Production Economics, 111(2), 195-208.
Geoffrion, A. M. & Graves, G. W. (1974). Multicommodity distribution system design by Benders decomposition. Management science, 20(5), 822-844.
Gianesello, P., Ivanov, D. & Battini, D. (2017). Closed-loop supply chain simulation with disruption considerations: A case-study on Tesla. International Journal of Inventory Research4(4), 257-280.
Glickman, T. S. & White, S. C. (2006). Security, visibility and resilience: the keys to mitigating supply chain vulnerabilities. International Journal of Logistics Systems and Management2(2), 107-119.
Golestani, Sh., Sadrzadeh-Moghaddam, S., Azim-Zadeh, S. (2012). Optimization of gasoline transportation from refineries and entry points to the main warehouses of the oil company: network flow model. Energy Economics Studies, 9(32), 95-124. (in Persian)
Guillén‐Gosálbez, G. & Grossmann, I. E. (2009). Optimal design and planning of sustainable chemical supply chains under uncertainty. AIChE Journal, 55(1), 99-121.
Guo, Y., Hu, F., Allaoui, H. & Boulaksil, Y. (2019). A distributed approximation approach for solving the sustainable supply chain network design problem. International Journal of Production Research, 57(11), 3695-3718.
Haghighi, S. M. & Torabi, S. A. (2018). A novel mixed sustainability-resilience framework for evaluating hospital information systems. International journal of medical informatics, 118(1), 16-28.
Haimes, Y. Y. (2006). On the definition of vulnerabilities in measuring risks to infrastructures. Risk Analysis, 26(2), 293-296.
Haldar, A., Ray, A., Banerjee, D. & Ghosh, S. (2012). A hybrid MCDM model for resilient supplier selection. International Journal of Management Science and Engineering Management, 7(4), 284-292.
Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V.-M. & Tuominen, M. (2004). Risk management processes in supplier networks. International Journal of Production Economics, 90(1), 47-58.
Hamidieh, A., Arshadi Khamseh, A. & Naderi, B. (2018). A resilient supply chain network design model with a novel fuzzy programming method under uncertainty and disruptions: a real industrial approach. Journal of Quality Engineering and Production Optimization, 3(2), 27-50.
Hezareh, V. & Bakharzi Qaz-Alhesar, S. (2018). Flood Risk Analysis of Mashhad Urban Railway (line 1). Geography and Human Relationships, 1(3), 522-538.
Hosseini-Motlagh, S.-M., Samani, M. R. G. & Homaei, S. (2020). Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real-life case). Journal of Ambient Intelligence and Humanized Computing, 11(3), 1085-1104.
Ivanov, D. (2018). Revealing interfaces of supply chain resilience and sustainability: a simulation study. International Journal of Production Research, 56(10), 3507-3523.
Jabbarzadeh, A., Haughton, M. & Khosrojerdi, A. (2018). Closed-loop supply chain network design under disruption risks: A robust approach with real world application. Computers & industrial engineering, 116(1), 178-191.
Javanbakht, M., Hosseini, S. H. (2019). An analysis of the vulnerability of the transmission line network of Khorasan Razavi province in the earthquake. Spatial analysis of environmental hazards, 6(3), 15-26. (in Persian)
Kaur, H. & Singh, S. P. (2016). Sustainable procurement and logistics for disaster resilient supply chain. Annals of Operations Research, 283(1), 309-354.
Kaur, H., Singh, S. P., Garza-Reyes, J. A. & Mishra, N. (2020). Sustainable stochastic production and procurement problem for resilient supply chain. Computers & Industrial Engineering139, 105560.
Kelle, P., Schneider, H. & Yi, H. (2014). Decision alternatives between expected cost minimization and worst case scenario in emergency supply–Second revision. International Journal of Production Economics, 157(25), 250-260.
Khalili, S. M., Jolai, F. & Torabi, S. A. (2017). Integrated production–distribution planning in two-echelon systems: a resilience view. International Journal of Production Research55(4), 1040-1064.
Kharaka, Y. K. & Dorsey, N. S. (2005). Environmental issues of petroleum exploration and production: Introduction. Environmental Geosciences, 12(2), 61-63.
Khosravi, K., Panahi, M., Golkarian, A., Keesstra, S. D., Saco, P. M., Bui, D. T. & Lee, S. (2020). Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. Journal of Hydrology, 591, 125552.
Kim, Y., Chen, Y. S. & Linderman, K. (2015). Supply network disruption and resilience: A network structural perspective. Journal of operations Management, 33(1), 43-59.
Kim, Y., Yun, C., Park, S. B., Park, S. & Fan, L. (2008). An integrated model of supply network and production planning for multiple fuel products of multi-site refineries. Computers & Chemical Engineering, 32(11), 2529-2535.
Kollias, C., Kyrtsou, C. & Papadamou, S. (2013). The effects of terrorism and war on the oil price–stock index relationship. Energy Economics, 40(1), 743-752.
Kouvelis, P., Dong, L., Boyabatli, O. & Li, R. (2011). Handbook of Integrated Risk Management in Global Supply Chain. Hoboken, New Jersey, John Wiley & Sons.
Larson, P. D. (2001). Designing and managing the supply chain: concepts, strategies, and case studies. Journal of Business Logistics, 22(1), 259-261.
Liang, T.-F. (2006). Distribution planning decisions using interactive fuzzy multi-objective linear programming. Fuzzy Sets and Systems, 157(10), 1303-1316.
Lim, M., Daskin, M. S., Bassamboo, A. & Chopra, S. (2010). A facility reliability problem: formulation, properties, and algorithm. Naval Research Logistics (NRL), 57(1), 58-70.
Mansouri, M., Nilchiani, R. & Mostashari, A. (2010). A policy making framework for resilient port infrastructure systems. Marine Policy, 34(6), 1125-1134.
Matheson, M. & Cooper, B. S. (2004). Security Planning and Preparedness in the Oil Pipeline Industry. The Oil & Gas Review, 1(5), 104-108.
McCoy, S. T. & Rubin, E. S. (2008). An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. International journal of greenhouse gas control, 2(2), 219-229.
Meixell, M. J. & Gargeya, V. B. (2005). Global supply chain design: A literature review and critique. Transportation Research Part E: Logistics and Transportation Review, 41(6), 531-550.
Metta, H. & Badurdeen, F. (2012). Integrating sustainable product and supply chain design: modeling issues and challenges. IEEE Transactions on Engineering Management, 60(2), 438-446.
MirHassani, S. (2008). An operational planning model for petroleum products logistics under uncertainty. Applied Mathematics and Computation, 196(2), 744-751.
Mishra, V. & Sharma, M. G. (2020). Understanding Humanitarian Supply Chain Through Causal Modelling. South Asian Journal of Business and Management Cases, 9(3), 317-329.
Mousavi, M., Jamali, G. & Ghorbanpour, A. (2021). A Green-resilient Supply Chain Network Optimization Model in Cement Industries. Industrial Management Journal, 13(2), 222-245. (in Persian)
Mulvey, J. M., Vanderbei, R. J. & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264-281.
Nasiri, M. M., Shahmoradi-Moghadam, H. & Torabi, S. A. (2018). A hub covering flow network design resilient to major disruptions and supply/demand uncertainties. International Journal of Business Continuity and Risk Management, 8(4), 319-334.
Neiro, S. & Pinto, J. M. (2004). A general modeling framework for the operational planning of petroleum supply chains. Computers & chemical engineering, 28(6), 871-896.
Olson, D. L. & Wu, D. D. (2013). Extreme-event risk management: a review of “Lee, B., Preston, F. 2012. Preparing for High-impact, Low-probability Events: Lessons from Eyjafjallajőkull. London: Chatham House.”. Journal of Cleaner Production, 53(8), 67-68.
Palencia, J. C. G., Furubayashi, T. & Nakata, T. (2012). Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials. Energy, 48(1), 548-565.
Pasqualetti, M. J. & Sovacool, B. K. (2012) .The importance of scale to energy security. Journal of Integrative Environmental Sciences, 9(3), 167-180.
Ritchie, B. & Brindley, C. (2007). Supply chain risk management and performance: A guiding framework for future development. International Journal of Operations & Production Management, 27(3), 303-322.
Sabouhi, F., Jabalameli, M. S. & Jabbarzadeh, A. (2021). An optimization approach for sustainable and resilient supply chain design with regional considerations. Computers & Industrial Engineering, 159, 107510.
Sahebjamnia, N., Torabi, S. A. & Mansouri, S. A. (2015). Integrated business continuity and disaster recovery planning: Towards organizational resilience. European Journal of Operational Research, 242(1), 261-273.
Samani, M. R. G., Hosseini-Motlagh, S.-M. & Ghannadpour, S. F. (2019). A multilateral perspective towards blood network design in an uncertain environment: Methodology and implementation. Computers & Industrial Engineering, 130(1), 450-471.
Sangbor, M. A., Safi, M. R., Azar, A. & Rabieh, M. (2021). Development a Quantitative Framework for Multilayer Fuzzy Cognitive Maps by combining. Industrial Management Journal, 13(1), 80-104. (in Persian)
Sawik, T. (2013). Selection of resilient supply portfolio under disruption risks. Omega, 41(2), 259-269.
Sazvar, Z., Tafakkori, K., Oladzad, N. & Nayeri, S. (2021). A capacity planning approach for sustainable-resilient supply chain network design under uncertainty: A case study of vaccine supply chain. Computers & Industrial Engineering, 159, 107406.
Sear, T. (1993). Logistics planning in the downstream oil industry. Journal of the Operational Research Society, 44(1), 9-17.
Selim, H., Araz, C. & Ozkarahan, I. (2008). Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396-419.
Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54(4), 1513-1520.
Shah, N. K., Li, Z. & Ierapetritou, M. G. (2010). Petroleum refining operations: key issues, advances, and opportunities. Industrial & Engineering Chemistry Research, 50(3), 1161-1170.
Sheffi, Y. (2007). The resilient enterprise: overcoming vulnerability for competitive advantage. Cambridge, MA: MIT Press.
Sinha, A. K., Aditya, H., Tiwari, M. & Chan, F. T. (2011). Agent oriented petroleum supply chain coordination: Co-evolutionary Particle Swarm Optimization based approach. Expert Systems with Applications, 38(5), 6132-6145.
Sinha, P. R., Whitman, L. E. & Malzahn, D. (2004). Methodology to mitigate supplier risk in an aerospace supply chain. Supply Chain Management: An International Journal, 9(2), 154-168.
Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451-488.
Thomas, D. J. & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94(1), 1-15.
Thun, J.-H. & Hoenig, D. (2011). An empirical analysis of supply chain risk management in the German automotive industry. International Journal of Production Economics, 131(1), 242-249.
Torabi, S. & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214.
Tosarkani, B. M. & Amin, S. H. (2018). A possibilistic solution to configure a battery closed-loop supply chain: multi-objective approach. Expert systems with applications, 92(1), 12-26.
Turnquist, M. & Vugrin, E. (2013). Design for resilience in infrastructure distribution networks. Environment Systems & Decisions, 33(1), 104-120.
Wang, F., Lai, X. & Shi, N. (2011). A multi-objective optimization for green supply chain network design. Decision Support Systems, 51(2), 262-269.
Wu, H.-J. & Dunn, S. C. (1995). Environmentally responsible logistics systems. International Journal of Physical Distribution & Logistics Management, 25(2), 20-38.
Yergin, D. (2006). Ensuring energy security. Foreign affairs, 69-82.
Yildiz, H., Yoon, J., Talluri, S. & Ho, W. (2016). Reliable supply chain network design. Decision Sciences, 47(4), 661-698.
Yu, G. & Qi, X. (2004). Disruption management: framework, models and applications. New Jersey, USA, World Scientific.
Zahiri, B., Zhuang, J. & Mohammadi, M. (2017). Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study. Transportation Research Part E: Logistics and Transportation Review, 103(1), 109-142.
Zhalechian, M., Torabi, S. A. & Mohammadi, M. (2018). Hub-and-spoke network design under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 109(1), 20-43.
Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.
Zobel, C. W. & Khansa, L. (2014). Characterizing multi-event disaster resilience. Computers & Operations Research,4(2), 83-94.
Zsidisin, G. A. & Wagner, S. M. (2010). Do perceptions become reality? The moderating role of supply chain resiliency on disruption occurrence. Journal of Business logistics, 31(2), 1-20.