بهینه سازی سبد پروژه با اثر متقابل با استفاده از الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری (TLBO)

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه مدیریت، دانشکدۀ مهندسی صنایع و مدیریت، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 کارشناسی‌ارشد رشتۀ MBA، دانشکدۀ مهندسی صنایع و مدیریت، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

امروزه سازمان­ها با انبوهی از پروژه­ها و فرصت­های سرمایه­گذاری مواجه‌اند. با وجود ضرورت توجه به معیارهای مختلف، پیچیدگی مدل­های چندهدفه در کنار ضعف ابزارهای بهینه‌سازی در حل این مدل­ها، مدیران را مجبور ساخته تا معیارهای انتخاب را محدودتر کرده و اغلب به معیارهای مالی اکتفا کنند. در این مقاله با بهره‌گیری از الگوریتمی کارا مبتنی بر فرایند آموزش و یادگیری علاوه‌بر معیارهای مالی، عواملی همچون توانایی سازمان در اجرای موفقیت‌آمیز پروژه­ها، میزان تحقق راهبرد­های سازمان در پرتو پروژه­های انتخابی و همچنین تأثیر متقابل مجموعه پروژه­های منتخب بر یکدیگر در قالب یک مدل برنامه­ریزی صفر و یک چندهدفه بررسی و بهینه گردید. در نهایت مدل ارائه‌شده در یک سازمان پروژه‌محور اعمال و نحوۀ عملکرد الگوریتم پیشنهادی با الگوریتم­های ژنتیک و بهینه‌سازی گروه ذرات مقایسه شد. نتایج حاکی از توانایی الگوریتم پیشنهادی در دستیابی به پاسخ بهینه و برتری آن نسبت به سایرین است.

کلیدواژه‌ها


عنوان مقاله [English]

project portfolio optimization considering project interactions using teaching-learning optimization alghorithm

نویسندگان [English]

  • Reza Sheikh 1
  • Maryam Azari 2
1 Assistant Prof., Faculty of Industrial Engineering and Management, Shahrood University, Shahrood, Iran
2 MSc,MBA, Shahrood University, Shahrood, Iran
چکیده [English]

: Nowadays, organizations are faced with a multitude of project and investment opportunities. Despite the importance of various criteria, complexity of multi-objective models and weakness of optimization algorithms often compelled manager to limit the selection criteria or only suffice to financial objects. In this paper, it is endeavored to extend selection criteria by using an efficient optimization algorithm based on teaching-learning process, which makes it possible to solve the proposed 0-1 multi-objective programing model. Finally efficiency of the applied algorithm called TLBO is compared with PSO and GA by applying the proposed model in a project oriented organization. It was shown that TLBO is better than GA and PSO algorithm technique, which was used before in such problems.

کلیدواژه‌ها [English]

  • project portfolio optimization
  • project interaction
  • teaching-learning based optimization algorithm (TLBO)
  • Multi-objective optimization
Abbassi, M., Ashrafi, M. & Sharifi Tashnizi, E.(2014).Selecting balanced portfolios of R&D projects with interdependencies:A Cross-Entropy based methodology . Technovation, 34, (1): 54–63.

Amiri. B. (2012), A Multi-Objective Hybrid Optimization Algorithm for Project Selection Problem, Journal of Basic and Applied Scientific Research, 2(7), 6995-7002.

Badri, M. & Davis, D., (2001). A comprehensive 0-1 goal programming model for project selection. International Journal of Project Management, (19), 243–252.

Baker, N., & Freeland, J. (1975). Recent advances in R&D benefit measurement and project selection methods. Management science21(10), 1164-1175.

Baker, N. R., Pound, W.H., )1964(. R&D project selection. IEEE Transactions on Engineering Management, (11) 124 -134.

Carazo, A. F., Gómez, T., Molina, J., Hernández-Díaz, A. G., Guerrero, F. M., & Caballero, R. (2010). Solving a comprehensive model for multiobjective project portfolio selection. Computers & operations research, 37(4), 630-639.

Casault, S., Groen, A.J., Linton, J.D., )2013(. Selection of a portfolio of R&D projects. In: Handbook on the Theory and Practice of Program Evaluation, chapter 4. Edward Elgar Publishing, UK, pp. 89–111,

Coldrick, S., Longhurst, P., Ivey, P., Hannis, J., )2005(. An R&D options selection model for investment decisions. Technovation (25), 185–193.

Cooper, R. G., Edgett, S. J. (2008). Portfolio Management for New Products:Picking the Winners. Product Innovation Best Practices Series.

Doerner, K. Gutjahr, W. J. Hartl, R. F. Strauss, C. & Stummer, C. (2004). Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, (131), 79-99.

Farsijani, H., Fattahi, M., Noroozi, M. H. (2012). Project Portfolio Selection with Considering Interaction Between Projects using Particle Swarm Optimization (PSO) & Chaotic Dynamic, Journal of Industrial Management Perspective 2(5), 27-48. In Persian.

Faghih, N., Montazeri, M. M. (2008), Genetic Algorithms for Assembly Line Balancing Problem, Journal of Industrial Management, 1(1): 107-124. In Persian.

Ghasemzadeh, F. ,N. Archer & P. Iyogum. (1999). A zero-One Model for Project Portfolio Selection and Scheduling, Journal of the Operational Research Society, 50 (7): 745-755.

Ghasemzadeh, F., Archer, N.P.,)2000(. Project portfolio selection through decision support. Decision Support Systems (29), 73–88.

Gupta,  S.K.,  Mandakovic,  T.,  1992.  Contemporary  approaches  to  R&D  project selection:  a  literature  search.  In:  Kocaoglu,  D.F.  (Ed.), Management  of  R&D and Engineering. North Holland, Amsterdam, pp. 67–87.

Harvey,M (2010): Project Management (4th edition). Pearson Education Limited, Edinburgh.

Heidenberger, K & Stummer, C. (1999). Research and development project selection and resource allocation: a review of quantitative modeling approaches. International Journal of Management Review, 1: 197-224.

Hoseini, M. Hosseinpour, H. Bastaee, B. (2014). A new multi objective optimization approach in distribution systems, Optimization Letters , 8 (1): 181-199.

Huang, X. (2007). Optimal project selection with random fuzzy parameters. International Journal of Production Economics, (106): 513-522.

Iamratanakul, S., Patanakul, P. Milosevic, D. )2008(. Project Portfolio Selection: From Past to Present. In: Proceedings of the 4th IEEE International Conference on Management of Innovation and Technology, ICMIT’

Khalili-Damghani, K Sadi-Nezhad, S.,(2013) ,A decision support system for fuzzy multi-objective multi-period sustainable project selection" Computers & Industrial Engineering, 1045–1060.

Khalili-Damghani, K., Sadi-Nezhad, S., & Aryanezhad, M. B. (2011). A modular decision support system for optimum investment selection in presence of uncertainty: Combination of fuzzy mathematical programming and fuzzy rule based system. Expert Systems with Applications, 38, 824–834.

Litvinchev, I.S., López, F., Alvarez, A., Fernández, E., 2010. Large-scale public R&D portfolio selection by maximizing a biobjective impact measure. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans 40 (3), 572–582.

Luo, L.-M., )2012(. Optimal diversification for R&D project portfolios. Scientometrics 91, 219–229.

Lootsma FA, Mensch TCA, Vos FA. (1990). Multi-criteria analysis and budget reallocation in long term research planning. European Journal of Operational Research, 47(3):293-305

Lucas H. C., Moore J. R. (1976). A multiple-criterion scoring approach to information system project selection. Information, 14 (1): 1-12.

Mavrotas, G, Diakoulaki, D. & Kourentzis, A. (2008). Selection among ranked projects under segmentation, policy and logical constraints. European Journal of Operational Research, (187): 177-192.

Mohaghar, A., Jafarnejad, A., Golabchi, M., Jabbarzadeh, U. (2012). Identifying Functions of Parent Organization: A Case Study in Project-Based Organizations of the Construction Industry, Journal of Industrial Management, 5(2): 141-154. In Persian.

Mukherjee, K. & Bera, A. (1995). Application of goal programming in project selection decision--A case study from the Indian coal mining industry. European Journal of Operational Research, 82: 18-25.

Muralidhar K., Santhanam R. & Wilson RL. (1990). Using the analytic hierarchy process for information system project selection. Information and Management. 18 (1): 87-95.

Niknam, T. Azizipanah-Abarghooee, R. & Narimani, M.R. (2012). A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems. Engineering Applications of Artificial Intelligence (25): 1577–1588.

Perez, F., & Gomez, T. (2014). Multiobjective project portfolio selection with fuzzy constraints. Annals of Operations Research, 1-23.

Pourkazemi, M. H., Fatahi, M. N., Mazaheri, S., Asadi, B. (2013). Project Portfolio Optimization with Considering Interaction between Projects Using Imperialist Competitive Algorithm (ICA), Journal of Industrial management, 5(1): 1-20 (in Persian).

Rao, R. V., & Kalyankar, V. D. (2012). Parameter optimization of machining processes using a new optimization algorithm. Materials and Manufacturing Processes, 27, 978–985.

Rao, R.V. & Patel, V. (2013). Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Applied Mathematical Modelling, 37 (3): 1147–1162

Rao, R.V. Savsani, V.J. & Vakharia, D.P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design , (43): 303–315.

Rao, R.V. & Patel, V. (2014). A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems. International Journal of Industrial Engineering Computations (5): 1–22.

Razavi, M., Soukhkian, M .A., Ziarati, K. (2011), A Meta Heuristic Algorithms Based on Ant Colony System For Solving Multi Depots Location-routing Problem with Multiple Using of Vehicle, Journal of Industrial management, 5 (5): 17-38 (in Persian).

Santhanam, R. & Kyparisis, G. J.(1996). A decision model for interdependent information system project selection. European Journal of Operational Research, (89): 380-399.

Santiago, L.P., Bifano, T.G., )2005(. Management of R&D projects under uncertainty: a multidimensional approach to managerial flexibility. IEEE Transactions on Engineering Management 52, 269–280.

Santos, B. L. (1989). Selecting information systems projects: problems, solutions & challenges. IEEE: System Sciences Conference, Hawaii, 1131-1140.

Shenhar A, Dvir D, Levy O & Maltz A (2001). Project success: a multidimensional strategic concept. Long Range Planning. 34(6): 699–725.

Stummer, C., & Heidenberger, K. (2001). Interactive R&D portfolio selection considering multiple objectives, project interdependencies, and time: A three-phase approach. In D. F. Kocaoglu & T. R. Anderson (Eds.), Technology Management in the Knowledge Era: Proceedings of the Portland International Conference on Management of Engineering and Technology (PICMET). 423–428.

Satapathy, S. C., Naik, A. (2012). Improved teaching learning based optimization for global function optimization, Decision Science Letters, (2): 23–34.

Tian, Q., Ma, J., Liang, J., Kwok, R., Liu, O. )2005(. An organizational decision support system for effective R&D project selection. Decision Support Systems 39, 403–413.

Tidd, J., Bessant, J., Pavitt, K., )2005(. Managing Innovation Integrating Technological, Market and Organizational Change, 3rd ed. John Wiley & Sons, Sussex.

Tog˘an, V. (2012). Design of planar steel frames using Teaching–Learning Based Optimization. Engineering Structures , (34): 225–232.

Van Wyk, R.J., (2010). Technology assessment for portfolio managers. Technovation30 (4), 223–228.