Bellman, R.E., Zadeh, L.A. (1970). Decision-making in a fuzzy environment. Management science, 17(4), 141-164.
Campos, L. & Verdegay, J. (1989). Linear programming problems and ranking of fuzzy numbers. Fuzzy sets and systems, 32(1), 1-11.
Delgado, M., Verdegay, J.L., Vila, M. (1989). A general model for fuzzy linear programming. Fuzzy Sets and systems, 29(1), 21-29.
Ezzati, R., Khorram, E. & Enayati, R. (2015). A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Applied mathematical modelling, 39(12), 3183-3193.
Fahimi, A., Shahbandarzadeh, H. (2021). Developing the Markowitz Portfolio Optimization Model Concerning Investor Non - financial Considerations and Supporting Domestic Products. Industrial Management Journal, 13(1), 53-79. (in Persian)
Fang, S.C., Hu, C.F., Wang, H.F. & Wu, S.Y. (1999). Linear programming with fuzzy coefficients in constraints. Computers & Mathematics with Applications, 37(10), 63-76.
Fathi, M., Nasrollahi, M., Zamanian, A. (2020). Mathematical Modeling of Sustainable Supply Chain Networks under Uncertainty and Solving It Using Metaheuristic Algorithms. Industrial Management Journal, 11(4), 621-652. (in Persian)
Fei, L., & Deng, Y. (2020). Multi-criteria decision making in Pythagorean fuzzy environment. Applied Intelligence, 50(2), 537-561.
Habibi, A. & Izadyar, S. (2014). Fuzzy Multi Criteria Decision Making, Tehran: Katibeh Gill. (in Persian)
Hussain, A., Chun, J., & Khan, M. (2021). A novel multicriteria decision making (MCDM) approach for precise decision making under a fuzzy environment. Soft Computing, 25(7), 5645-5661.
Inuiguchi, M. and Ramık, J. (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy sets and Systems, 111(1), 3-28.
Jiménez, M. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609.
Kumar, A., Kaur, J. & Singh, P. (2011). A new method for solving fully fuzzy linear programming problems. Applied Mathematical Modelling, 35(2), 817-823.
Kumar, R., & Dhiman, G. (2021). A comparative study of fuzzy optimization through fuzzy number. International Journal of Modern Research, 1(1), 1-14.
Lai, Y.J. & Hwang, C.L. (1992). A new approach to some possibilistic linear programming problems. Fuzzy sets and systems, 49(2), 121-133.
Mahdavi-Amiri, N. and Nasseri, S. (2006). Duality in fuzzy number linear programming by use of a certain linear ranking function. Applied Mathematics and Computation, 180(1),206-216.
Mahdavi-Amiri, N. and Nasseri, S.H. (2007). Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables. Fuzzy sets and systems, 158(17), 1961-1978.
Maleki, H.R., Tata, M. & Mashinchi, M. (2000). Linear programming with fuzzy variables. Fuzzy sets and systems, 109(1), 21-33.
Mohebbi, N., Najafi, A. (2018). Multi-Period Portfolio Optimization Using Dynamic Programming Approach. Industrial Management Studies, 16(50), 1-26. (in Persian)
Momeni, M. & Hosseinzadeh, M. (2012) A New approach for Solving Full Fuzzy Linear Programming Problems through Fuzzy Ranking Concept, Management Research in Iran, 16(4), 171-188. (in Persian)
Pishvaee, M.S. & Torabi, S.A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy sets and systems, 161(20), 2668-2683.
Sarmad, Z., Bazargan, A., Hejazi, E. (2021). Reseach Methods in Behaviour Sciences, 37th Edition, Tehran: Agah. (in Persian)
Sharifi Salim, A., Momeni, M., Modarres Yazdi, M., Raei, R. (2015). Multi Objective Stochhastic Programming for Stock Portfolio Selection. Journal Industrial Management, 7(3), 489-510. (in Persian)
Solanki, R., Lohani, Q. D., & Muhuri, P. K. (2021). Probabilistic Intuitionistic Fuzzy Decision Making Algorithms. IEEE Access, 9, 99651-99666.
Tanaka, H., Okuda, T. & Asai, K. (1973). On fuzzy mathematical programming. Cybernetics Systems, 3, 45-61.
Torabi, S.A. & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems, 159(2), 193-214.
Verdegay, J.L. (1984). A Dual approach to solve the fuzzy linear programming problem. Fuzzy sets and systems, 14(2), 131-141.
Wang, L.X. (1997). A course in fuzzy systems and control. Prentice-Hall International.
Werners, B. (1987). Interactive multiple objective programming subject to flexible constraints. European Journal of Operational Research, 31(3), 342-349.
Zimmermann, H.J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1), 45-55.