زمان‌بندی چندهدفه‌ پروژه با قابلیت فشرده‌سازی چندگانه‌ فعالیت‌های چندحالته و محدودیت منابع و حالت اجرای یکسان فعالیت‌های هم‌گروه

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

2 کارشناس ارشد، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

3 دانشجوی دکتری، گروه مهندسی صنایع، ، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

چکیده

هدف: هدف این پژوهش ارائه مدل و حل مسئله‌ زمان‌بندی پروژه با محدودیت منابع با اهداف چندگانه‌ قابلیت اطمینان، ریسک، زمان و هزینه پروژه در حالت گسسته، با لحاظ کردن قابلیت فشرده‌سازی چندگانه و همچنین حالت‌های اجرای یکسان زیرمجموعه فعالیت‌هاست.
روش: با بررسی و مطالعه ادبیات موضوع، یک مدل برنامه‌ریزی ریاضی برای مسئله ارائه شد و به‌‌دلیل NP-hard بودن مسائل زمان‌بندی در حالت گسسته، برای حل مسئله، از الگوریتم‌های فراابتکاری NSGA-II، MODA و NSGA-III در ابعاد متفاوت، استفاده شده است. پس از ارائه‌ نتایج، عملکرد الگوریتم‌های ذکرشده با استفاده از تعدادی معیارهای عملکردی ارزیابی شده است.
یافته‌ها: استفاده از مفاهیم فشرده‌سازی چندگانه و حالت‌های اجرای یکسان زیرمجموعه فعالیت‌ها و به‌تبع آن انتخاب بهترین حالت برای اجرای فعالیت‌ها در هر زیرمجموعه، با تعیین تعداد مناسب واحدهای زمانی فشرده‌سازی، سبب می‌شود در رابطه با اهداف پروژه به نتایج بسیار بهتری دست یافته و در نتیجه، قابلیت اطمینان پروژه حداکثر و ریسک، زمان و هزینه‌ تکمیل پروژه حداقل ‌شود.
نتیجه‌گیری: در نظر گرفتن مفاهیم قابلیت اطمینان و ریسک پروژه تا حد بسیار زیادی می‌تواند در هرچه بهتر انجام شدن پروژه‌ها کمک کند، در حالی که در بیشتر تحقیقات انجام‌شده، صرفاً به زمان و هزینه به‌عنوان اهداف پروژه توجه می‌کنند. علاوه بر آن با لحاظ کردن قابلیت‌هایی همچون فشرده‌سازی چندگانه و حالت‌های اجرای یکسان زیرمجموعه فعالیت‌ها، علاوه بر نزدیک­ کردن مسئله به دنیای واقعی، می‌توان به جواب‌های بهتری نیز دست یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Multi-objective Project Scheduling Considering Discrete Resource Constraints Problem with Multiple Crashable Modes and Mode-identity Capabilities

نویسندگان [English]

  • Hiwa Farughi 1
  • Saadi Payandeh 2
  • Farid Abdi 3
1 Assistant Prof., Department of Industrial Engineering, Kordestan University, Sanandaj, Iran.
2 MSc., Department of Industrial Engineering, Kordestan University, Sanandaj, Iran
3 Ph.D. Candidate, Department of Industrial Engineering, Kordestan University, Sanandaj, Iran.
چکیده [English]

Objective: The purpose of this paper is to provide a model to solve the problem of discrete resource constraints project scheduling with multi objectives of reliability, risk, time and cost of the project, taking into account the multiple crashable modes and mode-identity capabilities.
Methods: Studying the literature on the subject, a mathematical programming model for the problem is presented. Due to the NP-hardness of discrete project scheduling problems, the NSGA-II, NSGA-III and MODA, meta-heuristic algorithms are developed within different dimensions to solve the problem. After presenting the results, the comparison of these algorithms has been done using a number of multi-objective performance measures.
Results: Using multiple crashable modes concept and mode-identity in the subset of activities, and, consequently, choosing the best mode for executing activities in each subset and also determining the number of suitable units to reduce the time span, will lead to much better results in terms of project objectives.  As a result, the reliability of the project will be maximized and the risk, the time and the cost of project completion will be minimized.
Conclusion: While most previous studies have mainly focused on the time and costs of the project objectives, considering the reliability and risk of the project can help projects to yield better results. In addition, the features such as multiple crashable modes and mode-identity will lead to the real world situations and also better solutions can be found.

کلیدواژه‌ها [English]

  • Project scheduling problem
  • Reliability and risk
  • Meta-heuristic algorithms
  • Multiple crashable modes
  • Mode-identity
زارعی، مصطفی؛ حسن‌پور، حسینعلی (1394). موازنه زمان ـ هزینه برای بیشینه‌سازی ارزش خالص فعلی پیمانکار با الگوهای پرداخت هزینه و محدودیت منابع با استفاده از الگوریتم‌های تکاملی (مطالعه موردی: بخش محدودی از پروژه احداث پالایشگاه میعانات گازی بندرعباس). مدیریت صنعتی، 7(1)، 43-64.

شهرخی، محمود (1397). ارائه رویکردی برای محاسبه قابلیت اطمینان فازی بر پایه آهنگ خرابی فازی. ه مدیریت صنعتی، 10(2)، 183-200.

صفری، حسین؛ فقیه، علیرضا (1394). حل مسائل زمان‌بندی پروژه با محدودیت منابع (RCPSP) با استفاده از الگوریتم رقابت استعماری اصلاح­شده (DICA). مدیریت صنعتی، 7(2)، 333-364.

عالم‌تبریز، اکبر؛ خالدیان، فرنوش؛ مهدی‌پور، مصطفی (1395). پیش‌بینی زمان پروژه از طریق طول زمان کسب‌شده و مدیریت ریسک. مدیریت صنعتی، 8(2)، 217-240.

 

References

Afshar, A., Zolfaghar Dollabi, H.R. (2014). Multi-objective optimization of time-cost-safety using genetic algorithm. International Journal of Optimization in Civil Engineering, 4 (4), 433-450.

Alamtabriz, A., Khaledian, F., & Mehdipour, M.  (2016). Forecasting project duration by Earned Duration Management and Risk Management. Journal of Industrial Management, 8(2), 217-240. (in Persian)

Blazewicz, J., Lenstra, JK. Rinnoy Kan, A., (1983). Scheduling subject to resource constraints: Classification and Complexity. Discrete Applied Mathematics, 5, 11-24.

Choi, B. Ch., & Park, M.J. (2015). A continuous time-cost trade-off problem with multiple milestones and completely ordered jobs. European Journal of Operational Research, 244 (3), 748-752.

Das, I., Dennis, J. (1998). Normal-boundary intersection: A new method for generating Pareto surface in nonlinear multicriterion optimization problems. SIAM Journal on Optimization, 8 (3), 631-657.

De, P., Dunne, E.J., Ghosh, & J.B., Wells, C.E. (1997). Complexity of the discrete time-cost trade-off problem for project network. Operations Research, 45 (2), 302-306.

Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18 (4), 577-601.

Deb, K., Pratap, A., Agrawal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE, 6 (2), 182-197.

Erenguc, SS., Ahn, T., & Conway, DG. (2001). The resource - constrained project scheduling problem with multiple crashable modes: An exact solution method. Naval Research Logistics, 48 (2), 107-27.

Fulkerson, D.R. (1961). A network flow computation for project cost curves. Management Science, 7 (2), 167-178.

Garey, MR., & Johnson, DS. (1979). Computers and intractability. San Francisco Freeman.

Ge, Q., Peng, H., Houtum, G., & Adan, I. (2018). Reliability optimization for series systems under uncertain component failure rates in the design phase. International Journal of Production Economics, 196, 163-175.

Gladysz, B., Skorupka, D., Kuchta, D., & Duchaczek, A. (2015). Project risk time management- a proposed model and a case study in the construction industry. Procedia Computer Science, 64, 24-31.

Gong, C., Zhou, W., (2017). Improvement of equivalent component approach for reliability analyses of series systems. Structural Safety, 68, 65-72.

He, Zh., He, H., Liu, R., & Wang, N. (2017). Variable neighbourhood search and tabu search for a discrete time-cost trade-off problem to minimize the maximal cash flow gap. Computers and Operations Research, 78, 564-577.

Hindelang, T.J., & Muth, J.F. (1979). A dynamic programming algorithm for decision CPM networks. Operations Research, 27 (2), 225-241.

Kelly, J.E. Jr, (1961). Critical path planning and scheduling: Mathematical basis. Operations Research, 9 (3), 296-320.

Lova, A., Tormos, P., & Barber, F. (2006). Multi mode resource - constrained project scheduling: scheduling schemes, priority rules and mode selection rules. Intelinencia Artificial, 30, 69-86.

Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27 (4), 1053-1073.

Muriana, C., & Vizzini, G. (2017). Project risk management: A deterministic quantative technique for assessment and mitigation. International Journal of Project Management, 35 (3), 320-340.

Muritiba, A., Rodrigues, C., & Costa, F., (2018). A path - relinking algorithm for the multi-mode resource - constrained project scheduling problem. Computer and Operations Research, 92, 145-154.

Nwaneri, S.C., Anyaeche, C.O. (2014). An investigation of time-cost-risk trade-off in the installation of X-Ray machine using response surface methodology. Nijerian Journal of Technology, 33 (4), 482-489.

Paryzad, B., & Shahsavari Pour, N. (2016). Time-cost-quality-risk trade-off in GIGA projects using specific techniques of hunting dolphins. International Journal of Industrial and Systems Engineering, 22 (4), 484-499.

PMI Project Management Institute. A Guide to Project Management Body of Knoledge, (PMBOK Guide) - Sixth Edition, (2017(.

Rahmati, S.H.A., Hajipour, V., & Akhavan Niaki, S.T. (2013). A soft-computing pareto-based meta-heuristic for a multi-objective multi-server facility location problem. Applied Soft Computing, 13 (4), 1728-1740.

Safari, H., & Faghih, A. (2015). Solving the Resource-Constrained Project Scheduling Problems (RCPSP) Using Developed Imperialistic Competition Algorithm (DICA). Journal of Industrial Management, 7(2), 333-364. (in Persian)

Salewski, F., Schirmer, A., & Drexel, A. (1997). Project scheduling under resource and Mode - Identity constraints: Model, Complexity, Methods and Application. European Journal of Operational Research, 102, 88-110.

Saputra, YA., & Latiffianti, E. (2015). Project reliability model considering time-cost-resource relationship under uncertainty. Procedia Computer Science, 72, 561-568.

Shahrokhi, M. (2018). Developing an Approach to Calculate Fuzzy Reliability Based on Fuzzy Failure Rate. Journal of Industrial Management, 10(2), 183-200. (in Persian)

Slowinsky, R., Soniewicki, B., & Weglarz, J. (1994). DSS for multi objective project scheduling. European Journal of Operational Research, 79, 220-229.

Szmerekovsky, J.G., & Venkateshan, P., (2012). An integer programming formulation for the project scheduling problem with irregular time-cost trade-offs. Computers and Operations Research, 39 (7), 1402-1410.

Talbot, F.B. (1982). Resource-constrained scheduling with time-resource trade-offs: The nonpreemptive case. Management Science, 28 (10), 1197-1210.

Tavana, M., Li, ZH., Mobin, M., Komaki, M., & Teymourian, E. (2016). Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications, 50, 17-39.

Vanhouck, M., & Debels, D. (2007). The discrete time-cost trade off problem: extensions and heuristic procedures. Journal of Scheduling, 10 (4-5), 311-326.

Wang, G., Duan, F., & Zhou, Y. (2018). Reliability evaluation of multi-state series systems with performance sharing. Reliability Engineering and System Safety, 173, 58-63.

Xie, Y.L., Xia, D.H., Ji, L., Zho, W.N., & Huang, G.H. (2017). An inexact cost-risk balanced model for regional energy structure adjustment management and resources environmental effect analyses- a case study of Shandong province, China. Energy, 126, 374-391.

Zarei, M., & Hasanpour, H. (2015). Time-cost trade-off to maximization the net present value of contractor using evolutionary algorithms with patterns of payment and resource constraints. Journal of Industrial Management, 7(1), 43-64. (in Persian)

Zhu, G., Bard, J., & Tu, G. (2006). A branch and cut procedure for the multi mode resource – constrained project scheduling problem. Journal of Computing, 18 (3), 377-390.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. Swiss Federal Institute of Technology Zurikh, Diss. ETH No. 13398.

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8 (2), 172-195.

Zitzler, E., & Thiele, L. (1998). An evolutionary algorithm for Multiobjective optimization: The strength Pareto approach. Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETK), TIK Report, 43.

Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms – A comparative case study. In: Eiben A.E., Back, T., Schoenauer, M., Schwefel, HP. (eds) Parallel problem solving from nature – PPSN V. PPSN 1998 Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 1498, 292-301.