ارائۀ مدل پویایی ارزیابی بهره‏وری نیروی کار معادن (مطالعۀ موردی: مجتمع معدنی و صنعتی چادرملو)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی معدن‌ ـ فنی اقتصادی، دانشگاه تربیت مدرس، تهران، ایران‌

2 دانشیار گروه مهندسی معدن ‌ـ اقتصاد معدن، دانشکدۀ فنی مهندسی دانشگاه تربیت مدرس، تهران، ایران‌

3 دانشیار گروه مدیریت صنعتی، دانشکدۀ اقتصاد و مدیریت، دانشگاه تربیت مدرس، تهران، ایران‌

چکیده

صنعت معدن با وجود پیشرفت شایان توجه فناوری‏های مرتبط با آن، بر نیروی انسانی متکی است و نیروی کار یکی از نهاده‏های مهم تولید را تشکیل می‏دهد. در این مقاله، رویکردی مبتنی بر پویایی سیستم به‌منظور ارزیابی بهره‏وری نیروی کار در معادن ارائه شده است. بدین‌منظور ضمن شناسایی متغیرهای مؤثر بر بهره‏وری، دو مدل کیفی و کمّی طراحی و پیاده‏سازی شد. مدل کیفی توصیف‏کنندۀ روابط علّی و چگونگی بازخورد سیستمی بین متغیرها در قالب 14 حلقۀ علت ‌ـ معلولی است. مدل کمّی بر روابط ریاضی بین متغیرها و بازخوردهای مرتبط با آن مبتنی است. برای آزمایش کارکرد مدل، از داده‏های شرکت معدنی و صنعتی چادرملو استفاده شد و چگونگی تأثیر دو متغیر اصلی مهارت و انگیزه بر بهره‏وری نیروی کار بررسی گردید. بر‌اساس شبیه‏سازی‏های انجام‌شده کاهش 50 درصدی در مهارت و انگیزه به‌ترتیب افت 10 و 13 درصد بهره‏وری را به‌دنبال خواهد داشت. با استفاده از مدل ارائه‌شده، مدیران شرکت قادر خواهند بود که عوامل مؤثر و میزان تأثیر آنها را بر بهره‏وری نیروی کار ارزیابی کنند و برای بهبود تصمیم‎های لازم را اتخاذ نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Dynamic modelling of labor productivity in mining- Case study: Chadormaluo mining and industry complex

نویسندگان [English]

  • Zirar Mahmoodi 1
  • Ahmad Sayadi 2
  • Ali Rajabzadeh Ghatari 3
1 MSc. Student of Mining Engineering, Tarbiat Modares University, Tehran, Iran
2 Associate Prof., of Mining Economics, Tarbiat Modares University, Tehran, Iran
3 Associate Prof., of Industrial Management, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In despite of all progress in technology in mining industry, still labor is one of the key factors in mining operation. This paper presents a system dynamics approach to evaluate the mining labor productivity. Therefore, after the identification of main effective variables, two quantitative and qualitative models were built. The qualitative model illustrates the complex interrelated structure of effective variables in 14 causal and feedback loops. The quantitative model is based on mathematical relationship between variables. Finally, the model was implemented in Chadormaluo mining complex as one of the main producers of iron ore and concentrate in Iran. Simulation of labor productivity shows that 50% decrease in skill and motivation will result 10% and 13% decline in labor productivity, respectively. This model helps managers to evaluate the influence of effective factors on labor productivity and to have appropriate decision making.

کلیدواژه‌ها [English]

  • Labor productivity
  • System Dynamics
  • mine
  • iron
Ahmadvand, A., Khodadadi A, H., Mohammadiani, Z., (2015). An analysis of housing market in Tehran Province using system dynamics. Journal of Industrial Management, 6(4), 665-683. (in Persian)
Ansari Ranani, Gh., and Sabzi Aliabadi, S. (2009). “Prioritizing the effective organizational factors in improving labor productivity in small industriesˮ Business Review. 39, 49-64. (in Persian)
Aydin, H., & Tilton, J. E. (2000). Mineral endowment, labor productivity, and comparative advantage in mining. Resource and Energy Economics, 22(4), 281-293.
Bartelsman, E., Haltiwanger, J., & Scarpetta, S. (2013). Cross-country differences in productivity: The role of allocation and selection. The American Economic Review, 103(1), 305-334.
Calcagnini, G., & Travaglini, G. (2014). A time series analysis of labor productivity. Italy versus the European countries and the US. Economic Modelling, 36, 622-62.
Connell, J., & Hannif, Z. (2009). Call centres, quality of work life and HRM practices: An in-house/outsourced comparison. Employee Relations, 31(4), 363-381.
Cost control and margin protection in the South African mining and metals industry. (2013). http://emergingmarkets.ey.com/.
Dai, J., Goodrum, P. M., & Maloney, W. F. (2009). Construction craft workers’ perceptions of the factors affecting their productivity. Journal of Construction Engineering and Management, 135(3).  
Elahi, M., Lotfi, M:M., (2014). A System Dynamics Approach for Analyzing the Human Resource Changes in Sedan Tire Industry of Iran. Journal of industrial management, 5(2), 23-48. . (in Persian)
Erba, E., & Aplin, R. (1996). Factors affecting labor productivity and cost per gallon in fluid milk plants. Journal of dairy science, 79(7), 1304-1312.
Forrester, J. W. (1992). Policies, decisions and information sources for modeling. European Journal of Operational Research, 59(1), 42-63.
Galdon-Sanchez, J. E., & Schmitz Jr, J. A. (2003). Competitive pressure and labor productivity: world iron ore markets in the 1980s. Federal Reserve Bank of Minneapolis Quarterly Review, 27(2), 9-23.
Garcia, P., Knights, P. F., & Tilton, J. E. (2001). Labor productivity and comparative advantage in mining: the copper industry in Chile. Resources Policy, 27(2), 97-105.
Hajgholam Saryazdi, A., & Porserajian, D. (2011). “Extraction dynamics in the behavior of knowledge based companies in science and technology parks with System Dynamics Approachˮ 1th Nati. Conf. Systenic Approach, Shiraz, Iran. (in Persian)
Hanna, A. S., Taylor, C. S., & Sullivan, K. T. (2005). Impact of extended overtime on construction labor productivity. Journal of Construction Engineering and Management, 131(6), 734-739.
Helo, P., Hilmola, O.-P., & Maunuksela, A. (2000). Modelling product development productivity with system dynamics. Paper presented at the The 18th International Conference of the Systems Dynamics Society (Bergen Norway).
Iranian Mines and Mining Industry Development and renovation Organization (IMIDRO)., (2004). “Report of anticipated production schedule and the investment of mining equipment and processing iron ore mines in the 30-year horizon.ˮ Tehran, Iran. (in Persian)
Joaquín Jara, J., Pérez, P., & Villalobos, P. (2010). Good deposits are not enough: Mining labor productivity analysis in the copper industry in Chile and Peru 1992–2009. Resources Policy, 35(4), 247-256.
Katsanis, C. J. (2003). system dynamics modeling for a decision support system for assessing construction productivity. Paper presented at the 5th Construction Specialty Conference of the Canadian Society for Civil Engineering, Moncton, Nouveau-Brunswick, Canada.
Mahmoodi, Z., Sayadi, A.R. Rajabzade Ghatari, A. (2015). “Energy productivity evaluation in mines using system dynamics approach.ˮ 3th. cof. of surface mines., Kerman. (in Persian)
Mawdesley, M. J., & Al-Jibouri, S. (2009). Modelling construction project productivity using systems dynamics approach. International Journal of Productivity and performance management, 59(1), 18-36
Nasirzadeh, F., & Nojedehi, P. (2013). Dynamic modeling of labor productivity in construction projects. International Journal of Project Management, 31(6), 903-911.
Soltaninejad, M. Shahraki, A. & Jahanshahi, M. (2012) .A System Dynamics Model for Productivity in National Iranian Copper Industries Company – Sarcheshmeh, Kerman. Interdisciplinary Journal Of Contemporary Research In Business, 4(2), 425-435.
Soekiman, A., Pribadi, K., Soemardi, B., & Wirahadikusumah, R. (2011). Factors relating to labor productivity affecting the project schedule performance in Indonesia. Procedia Engineering, 14, 865-873.
Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex world, (Vol. 19): Irwin/McGraw-Hill Boston.
Sushil. (1993). System dynamics: a practical approach for managerial problems: Wiley Eastern Limited, Dlhi, India.
Tilton, J. E. (2001). Labor productivity, costs, and mine survival during a recession. Resources Policy, 27(2), 107-117.