طراحی مدلی برای ارزیابی و اولویت بندی پیمانکاران با استفاده از تحلیل سلسله مراتبی فازی و تابع زیان تاگوچی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه مدیریت، دانشکدۀ اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز، ایران

2 دانشجوی کارشناسی‌ارشد مدیریت صنعتی، دانشگاه شیراز، شیراز، ایران

چکیده

هدف از مقالۀ پیش رو ارزیابی و اولویت­بندی پیمانکاران شرکت توزیع برق استان فارس است. طبیعت چنین تصمیم­گیری­هایی به‌طور معمول پیچیده است و اساساً یک مسئلۀ تصمیم­گیری چندمعیاره است. اگر عملکرد پیمانکاران مطلوب نباشد، موجب خسران می­شود، به‌عبارت دیگر، پیمانکاری عملکرد بهتری دارد که زیان کمتری را بر شرکت تحمیل کند. برای تعیین میزان زیان ناشی از اقدام‌های پیمانکاران می­توان از تابع زیان تاگوچی استفاده کرد. در این مقاله با استفاده از فرایند تحلیل سلسله‌مراتبی فازی و ترکیب آن با مدل تابع زیان تاگوچی مدلی برای ارزیابی و اولویت‌بندی پیمانکاران ارائه می­شود. این روش رتبه‎بندی کاملی را براساس عملکرد رتبه­بندی تأمین‎کنندگان ارائه می‎کند. ورودی این مدل داده­های مربوط به بیست پیمانکار شرکت توزیع برق استان فارس در بیست‌وچهار معیار انتخابی و خروجی این مدل امتیاز نهایی زیان ناشی از کار با هر پیمانکار است. براساس نتایج قوی­ترین و ضعیف­ترین پیمانکار به‌ترتیب زیانی معادل 20/29 و 15/98 درصد به شرکت وارد می­کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a Model for Evaluation and Prioritizing of Contractors by Using Fuzzy analytic Hierarchy and Taguchi Loss Function

نویسندگان [English]

  • Abolghasem Ebrahimi 1
  • Moslem Alimohammadlou 1
  • Sahar Mohammadi 2
1 Assistant Professor of management Department , Shiraz University,shiraz,Iran
2 MSc. Student of industrial management, Shiraz University,shiraz,Iran
چکیده [English]

This Paper has been done with the goal of assessment and prioritization of contractors of Fars Province Electricity Distribution Company. Such decision makings are generally complicated and are essentially considered as an multi-criteria decision making process. If the tasks assigned to contractors are not performed appropriately, it would lead to loss. In other words, contractors who cause the least loss, are considered as those with the best performance. Taguchi’s loss function can be used in order to calculate the loss caused be contractors performance. In this paper, a model has been proposed using Fuzzy AHP and combining it with Taguchi’s loss function, in order to assess and rank the contractors. A great ranking of contractors based on their performance is obtained using this methodology. The input data of this model is acquired of twenty contractors of Fars Province Electricity Distribution Company in twenty-four criteria and the output of this model is the final points of cooperating with each contractor. The results show that the strongest and weakest contractor impose Loss of 29.20 and 98.15 percent, respectively, on company.

کلیدواژه‌ها [English]

  • Fuzzy theory set
  • AHP
  • prioritization of contractors
  • Taguchi loss function
Ahari, R. Niaki, S.T.A.(2014). Contractor Selection in Gas Well-drilling Projects with Quality Evaluation Using Neuro-fuzzy Networks”, 2014 International Conference on Future Information Engineering, 274-279.
Amiri, M., Jahani, s. (2011). Application of IDEA/AHP for Supplier evaluation and Selection, Industrial Managemet Journal of Tehran university, 2(5): 5-22 (in persian).
Arsalan, G. Kivark, S. Birgonul, M.T and Dikmen,(2008). Improving sub-contractor selection process in construction projects: Web-based sub-contractor evaluation system (WEBSES), Automation in Construction 17: 480-488.
Azadeh, A., Alem, S.M.,(2010). A flexible deterministic, stochastic and fuzzy Data Envelopment Analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Systems with Applications, 37: 7438–7448.
Bakhshi, M., Hosseinalipour, M., & Attayiyazd, M. (2014). Weighting Categories of criteria for selecting a new contractor using fuzzy hierarchical analysis, the National Congress building and evaluating development projects, Gorgan, Golestan Province Engineering Organization (in persian).
Barzinpour, F., & Namazifard, S. (2011). Identification and Prioritizing the Indexes of ContractorSelection in Project-based Organizations with Balanced Scorecard. 2nd International Conference on Strategic Management of Projects. Tehran: Sharif University of Technology, Shahid Rezaei Research Center (in persian).
Bhattacharya, A., J. Geraghty, and P. Young. (2010). Supplier Selection Paradigm: An Integrated Hierarchical QFD Methodology Under Multiple-criteria Environment, Applied Soft Computing, 10 (4): 1013–1027.
Chai, J., Liu, J.N.K., Ngai, E.W.T., (2013). Application of decision-making techniques in supplier selection: a systematic review of literature. Expert Syst. Appl. 40 (10): 3872–3885.
Chen, T.-Y., Wang, H.-P., Lu, Y.-Y., (2011a). A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: a comparative perspective. Expert Syst. Appl. 38 (6): 7647–7658.
Cheng H., J ; Lee M., CH and Tang H.,CH (2009). An Application of Fuzzy Delphi and Fuzzy AHP on Evaluating Wafer Supplier in Semiconductor Industry. Wseas transactions on information science and applications 6: 756- 767.
Cheng Tang, Yu and Lin ,Thomas W (2011). Application of the fuzzy analytic hierarchy process to the lead-free equipment selection decision. Business and Systems Research,, 5(1): 35-55
Dani, M., Shiroyezad,H.,(2012). Evaluate and select the best contractor in the Department of Municipal Development of the method of AHP, First National Conference on Industrial Engineering and Systems, Najaf Abad, Islamic Azad University of Najaf Abad, Department of Industrial Engineering (in persian).
Dashti, M., Mirani, M., Karimoyan,M.,(2011). Evaluation and selection of contractors, construction projects using the FMADM algorithm, National Congress of structures, road, architecture, Chaloos, Islamic Azad University Chaloos Branch (in persian).
Eshtehardian, E. (2003). Evaluation of Pre-qualification Indexes and Superior Contractor Selectionin Tenders. M.Sc. Thesis, Iran University of Science and Industry (in persian).
Farzinpoor Saen, R.,(2010). Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data, Int. J. Adv. Manuf. Technol. 51 (9–12): 1243–1250.
Ferreira, L., Borenstein, D., (2012). A fuzzy-Bayesian model for supplier selection, Expert Syst, Appl. 39 (9): 7434–7844.
Golbaharzadeh, M., Mahdavi Adeli, M., Khezrlou, M., & Golbaharzadeh, M. (2013). Ranking Constructional Contractors according to a Proposed Fuzzy Multi-criteria Decision-making Model (Case Study: in a Steel Manufacturing Co.). 6th Cross-regional Conference on Modern Developments in Engineering Sciences. Tonekabon: Ayandehan Higher Education Institute (in persian).
Guneri, A.F., Ertay, T., Yücel, A., (2011). An approach based on ANFIS input selectionand modelling for supplier selection problem. Expert Syst, Appl. 38 (12): 14907–14917.
Heidari, A., & Heidari, M. (2008). ContractorsSelection by AHP. National Conference on Value Engineering in the Construction Industry, Tehran: Ghalamchi Institute of Management Services and Development Technology (in persian).
Ho, W., Xu, X., Dey, P.K., (2010). Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202 (1): 16–24.
Jadidi,O., Zolfaghari, S. and Cavalieri, S.,(2014). A new normalized goal programming model for multi-objective problems: A case of supplier selection and order allocation. International Journal of Production Economics148: 158–165.
Kazemi Asiabar, M. (2011). Ranking and Optimal Contractor Selection by AHP-VIKOR Hybrid Technique in Fuzzy Environment; Case Study: Mazandaran Province Industrial Suburbs Co. M.Sc. Thesis. Qazvin Imam Khomeini International University (in persian).
Khakbazabiyaneh, A., Sajadi,M. & Zamani sadeh,M.,(2012). Provide a model for the selection of subcontractors in the oil industry standards approach is the balanced scorecard and analytic hierarchy, the third National Conference of Industrial and Systems Engineering, Tehran, Islamic Azad University, Tehran South (in persian).
Khavari Nejad, M. M. (2012). Evaluating Pre-qualification Indexes for Selection of Class-one Suitable Buildings Contractor in Tenders by Fuzzy AHP. M.Sc. Thesis, Islamic Azad University, Tehran Science and Research Branch (in persian).
Khodaei, F. (2005). Select the preferred contractor in a tender on construction case study in Horizon Consulting Engineers, master's thesis, Islamic Azad University Central Tehran Branch (in persian).
Kumar Dey P., Bhattacharya,A. Ho William,(2015). Strategic supplier performance evaluation: A case-based action research of a UK manufacturing organization, Int. J. Production Economics
Lee, C.C., Ouyang, C., (2009). A neural networks approach for forecasting the supplier's bid prices in supplier selection negotiation process. Expert Syst.Appl. 36 (2): 2961–2970.
Levary, R.R., (2008). Using the analytic hierarchy process to rank foreign suppliersbased on supply risks, Comput. Ind. Eng. 55 (2): 535–542.
Li, L., Zabinsky, Z.B., 2011. Incorporating uncertainty into a supplier selection problem, Int. J. Prod. Econ. 134 (2): 344–356.
Liao, C. N., & Kao, H. P. (2010). Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming, Computers & Industrial Engineering, 58(4): 571-577.
Liao, Ch.N; Kao, H.P .(2010). Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming ,Computers & Industrial Engineering, 58: 571-57.
Lin , H. T.,(2010). Personnel selection using analytic network process and fuzzy data envelopment analysis approaches, Computers & Industrial Engineering, 59 :937–944.
Lin, C.-T., Chen, C.-B., Ting, Y.-C., (2011). An ERP model for supplier selection in electronics industry, Expert Syst. Appl. 38 (3): 1760–1765.\
Mirhadifard, M. (2005). Designing the Model for Selection of Construction and Installation Contractors in Petrochemical, Petroleum, and Gas Projects. M.Sc. Thesis. Sharif University of Petroleum (in persian).
Mohaghar, A., Kashi, K., & Salami, H. (2012). Industrial Management Publication. Fourth Year, 8: 85-108 (in persian).
Nahanvandi, N & Noruzi, A.(2011). evaluation of contractors using Fuzzy multi–criteria dependent and independent relations. Journal of Transportation, 3: 303-321 (in persian).
Nasrollahi,M.(2015). Evaluating and ranking construction projects contractors using F-PROMETHEE (A Case Study of Mehr Housing Project of Hashtgerd New Town), Industrial Managemet Journal of Tehran university, 7(1):175-188 (in persian).
Pi, W.N and Low, Ch (2005). Supplier evaluation and selection using Taguchi loss functions, Int J Adv Manuf Technol, 26:155-160.
Plebankiewicz, E. (2009). Contractor prequalification model using fuzzy sets,Journal of Civil Engineering and Management, 15(4): 377-385.
Rafiei siavashkolayi,M. and Ammini, B(2010). Identify and prioritize effective indicators in the evaluation and selection of contractors, Twenty-Fifth International Conference on Electricity, Tehran, tavanir company, Energy Research Institute (in persian).
Ravanshadnia, M.Hazrati, A. & Rajaei, H. (2007). Model for Contractor selesction by SAW MADM.3th International Conference on Project Management. Tehran: Ariana Research Group (in persian).
Razmi, J., Hale, H., & Meshkinfam, S.(2007). Evaluation and selection of construction contractors using fuzzy multicriteria methods5th International Conference on Management. Tehran: Ariana Research Group (in persian).
Sadeghi,H., Samanian,H.,Moini,F.,Yazdani,M.,(2009). A fuzzy integrated approach for ranking and selection of contractors in EPC projects, The first national conference of the project as EPC, Tehran, Department of the contracting system (in persian).
Sahraei,F.and Roghanian,E.,(2013). Applying TOPSIS method for decision-making in a fuzzy environment for ranking contractors, National Iranian Gas Company Case Study: Tehran Province Gas Company, Second National Conference on Industrial Engineering and Systems, Najaf Abad, Islamic Azad University of Najaf Abad, Department of Industrial Engineering (in persian).
Sevkli, M., (2010). An application of the fuzzy ELECTRE method for supplier selection, Int. J. Prod. Res, 48 (12): 3393–3405.
Shahin, A., Vaez shahrestani, H., & Bagheri Iraj, E.(2014). Proposing an integrated approach of Kano Model and Taguchi Design of Experiments, Industrial Managemet Journal of Tehran university, 6(2): 317-336 (in persian).
Shakiba Zahed, H. (2012). “The Proposed Method of Transfer the Project to the Most Suitable Contractor by Using Risk Analysis.” M.Sc. Thesis. Sharif University of Technology (in persian).
Singh, D and Tiong, RLK (2005). A fuzzy decision framework for contractor selection, Construction Engineering and Management, 131:  62-70.
Tavakoli, A., & Kamrani, M. (2011). Prioritizing the Indexes of ContractorSelection in Power Plants according to AHP. 6th Conference on Power Plants, Tehran: Tarasht Power Plant. (in persian)
Tseng, M., (2011). Green supply chain management with linguistic preferences and incomplete information, Appl. Soft Comput. J. 11 (8): 4894–4903.
Yu, M., Goh, M., & Lin, H. (2012). Fuzzy multi-objective vendor selection under lean procurement. European Journal of Operational Research, 219(2): 305–311.
Zakeri Afshar, A. Moeini Aghtaei, M. & Zand Aghtaei, H.(2014). Model for improving the evaluation of contractors in construction projects using the integration of the existing situation and AHP method. First National Congress of engineering, fabrication and evaluation of development projects,Gorgan (in persian).
Zare Mehrjerdi, Y., Momeni, H., & Barghi, S. (2010). Contractors Evaluation and Selection Model in Petrochemical Projects; Decision Making Techniques Approach –Technique of Breda. Business Administration Researches Publication, 3: 33-59 (in persian).