برنامه‌ریزی تاکتیکی استوار زنجیرۀ تأمین جهانی سه‌سطحی تحت شرایط اختلال تحریم با در نظر گرفتن عمر قفسه‌ای (مطالعۀ موردی: زنجیرۀ تأمین دارو)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی سیستم‌های اقتصادی اجتماعی، دانشگاه علم و صنعت، تهران، ایران

2 دانشیار، فناوری صنعتی، دانشکدۀ مهندسی صنایع دانشگاه علم و صنعت، تهران، ایران

3 استادیار، مهندسی سیستم‌های اقتصادی اجتماعی، دانشکدۀ مهندسی صنایع دانشگاه علم و صنعت، تهران، ایران

چکیده

در دو دهۀ اخیر به‌دلیل جهانی ‌شدن زنجیرۀ تأمین، تغییرات فراوانی در شرایط زنجیره‌ها رخ‌ داده است. راهبران و مدیران کلان، همواره با ریسک‌های جدیدی روبه‌رو هستند که با برنامه‌ریزی باید برای مقابله با آن‌ها آماده شوند. در سال‌های اخیر، تحریم به‌عنوان یکی از جدی‌ترین ریسک‌ها تأثیرات مخرب خود را بر زنجیره‌های تأمین گذاشته است؛ درحالی‌که در پژوهش‌های مربوط به زنجیرۀ‌ تأمین جهانی، مسئلۀ اختلال مغفول مانده است. هدف این پژوهش مدل‌سازی زنجیرۀ دارو در سطح تاکتیکی در شرایط اختلال تحریم است. جریان فیزیکی و مالی و اختلال آن دو در شرایط تحریم، به‌صورت همزمان مدل‌سازی شده است. برای تکمیل جریان مالی نسبت‌های مالی نیز وارد مدل شده‌اند. عدم قطعیت مسئله با استفاده از یکی از جدیدترین رویکردهای بهینه‌سازی استوار به‌نام برنامه‌ریزی امکانی استوار مدل‌سازی شده است. مدل بر روی مجموعۀ دارویی آترا پیاده‌ شد و نتایج آن توسط نرم‌افزار گمز تحلیل و اعتبارسنجی شد. نتایج از یک سیستم استوار در برابر اختلال تحریم نشان دارد که بدون تخطی از محدودیت‌های مسئله، تصمیمات مناسب برای برخورد با مسئله را نمایان می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Tactical Planning of Three-Level Supply Chain considering Sanction Disruption and Shelf Life: A case Study of ATRA Drug Supply Chain

نویسندگان [English]

  • Mahsa Salsabil 1
  • Mohammad Ali Shafia 2
  • Mir Saman Pishvaee 3
  • Kamran Shahanaghi 3
1 MSc, Economic and Social Systems Engineering, Iran University of Science and Technology
2 Associate Prof, Faculty of Industrial Technology, Iran University of Science and Technology, Tehran, Iran
3 Associate Prof, Faculty of Economic and Social Systems Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In the last two decades due to globalization of supply chain, enormous changes occurred in chains. Leaders in this field, always facing new risks and disorders that should prepare themselves to deal with them. In the recent years, sanctions as one of the most serious risks have damaged the supply chains. However, in the research related to global supply chains, modeling of disruption has been neglected. The purpose of this study was the modeling of drug supply chain at the tactical level in terms of sanction impairing. Physical and financial flow and their disruption in the term of sanction have been modeled simultaneously. To complete the financial flow, financial statements have also been modeled. One of the newest approaches named Robust Possibilistic Programming has been used for the modeling of the uncertainty of the problem. The model has been implemented on a drug organization called Atra and the results have been analyzed and validated by the optimization software Gams. The results show a robust and resistant system in the case of sanction disruption that without violating the constraints of the problem shows the appropriate measures to deal with the problem.

کلیدواژه‌ها [English]

  • Drug Supply Chain
  • Robust Possibilistic Programming (RPP)
  • Sanction Disruption
  • ShelfLife
  • Tactical Programming
Acar, Y., Kadipasaoglu, S. & Schipperijn, P. (2010). A decision support framework for global supply chain modelling: an assessment of the impact of demand, supply and lead-time uncertainties on performance. International Journal of Production Research, 48(11).
Amiri, M., Jahani, S., (2010),  Select a methodology of IDEA/AHP for evaluation and selection of suppliers, Journal of Industrial Management, 2(5): 5-18 (in Persian).
Chopra, S, Meindel, P. (2007). Supply chain management – strategy, planning & operation (3rd edn, Vol. Vol1). Englewood Cliffs: Pearson Prentice-Hall.
FDA. (1987). Guideline for submitting documentation for the stability of human drugs and biologizes. Rockville, Maryland: Food and Drug Administration, Center for Drug and Biologizes,: Office of Drug Research and Review.
Ghiani, G, Laporte, G. & Musmanno, R. (2004). Introduction to logistic systems planning and control. Chicester: Wiley.
Goh, M., Lim, J. Y. S. & Meng, F. (2007). A stochastic model for risk management in global supply chain networks. European Journal of Operational Research, (182): 164–173.
Hadjinicola, G., Kumar, K., (2002). Modeling manufacturing and marketing options in international operations. International Journal of Production Economics, (75): 287–304.
Hendricks, K., Singhal, V., (2005). The Effect of Supply Chain Disruption on Long Term Shareholder Value, Profitability and Share Price Volatility. Atlanta: Research Report: Georgia Institute of Technology.
Hushmandi Maher, M., Amiri, M., Olfat, L., (2014), Mathematical model of supplier selection and order allocation in the supply chain considering the uncertainties in design variables, Journal of Industrial Management, 6(1), 151-180(in Persian).
Liu, S., G.Papageorgiou, L. (2013). Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. Omega, 41 : 396–382.
Miller, T., Matta, R. de. (2008). A Global Supply Chain Profit Mazimization and Transfer Pricing Model. Journal of Business Logistics, 29(1).
Mirgafouri, S.H, Morovati Sharifabadi, A., Asadian, F., (2012), Analysis of the risk of suppliers in the supply chain with a combined approach of Grey relational analysis and Vaikor, Journal of Industrial Management, 4(2): 153-178 (in Persian).
Mohasebat Mali, (2013), Calculation Website, http://accountingexplained.com/financial/‎
Nagurney, A., Cruz, J. & Matsypura, D. (2003). Dynamics of global supply chain supernetworks. Mathematical and Computer Modelling, (37): 963–983.
Oh, H.C., Karimi, I. A. (2004). Regulatory Factors and Capacity-Expansion Planning in Global Chemical Supply Chains. Ind. Eng. Chem. Res, 43(13): 3364–3380.
Oh, H.C.,  Karimi, I. A. (2005). Global Multiproduct Production–Distribution Planning with Duty Drawbacks. AIChE Journal, 52(2).
Peck, H. (2005). Drivers of Supply Chain Vulnerability : an Integrated Framework. International Journal of Physical Distribution & Logistics Managment, 35: 210–232.
Perron, S., Hansen, P., Le Digabel, S. & Mladenovic, N. (2010). Exact and heuristic solutions of the global supply chain problem with transfer pricing. European Journal of Operational Research, (202): 864–879.
Pishvaee, M. ., Razmi, J. & Torabi, S., (2012). robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets and Systems, (206): 1–20.
Raj Singh, A., Mishra, P. K., Jain, R. & Khurana, M. K. (2012). Design of global supply chain network with operational risks. Int J Adv Manuf Technol, (60): 273–290.
Sadeghi Moghadam, M.R, Momeni, M., Nalchigar, S., (2009), Integrated planning of supply, production and distribution in supply chains using genetic algorithms, Journal of Industrial Management, 1(2): 71-88. (in Persian).
Soleimani,M, (2013), International Hub Logistics- Iran, Institute of Studies and Research of Business , (16) (in persian).
Sun, J. (2014). Global Production Planning with Fuzzy Exchange Rates. Journal of Uncertain Systems, 8(1): 58–65.
T. Sousa, R., Liu, S., G. Papageorgiou, L. & Shah, N. (2011). Global supply chain planning for pharmaceuticals. Chemical Engineering Research and Design, (89): 2396–2409.
Tang, C. (2006). Perspectives in Supply Chain Risk Managment. International Journal of Production Economics, 103: 451–488.
Taheri, Sh, (2007), How to Analysis the Performance of Organization, Hestan (in persian).
Vidal, C., Goetschalckx, M. (2001). A global supply chain model with transfer pricing and transportation cost allocation. European Journal of Operational Research, (129): 134–158.
Wu, T., Blackhurst, J. & Grady, P. (2007). Methodology for Supply Chain Disruption Analysis. International Journal of Production Research, (45): 1665–1682.
You, F., Wassick, J. M. & Grossmann, I. E. (2009). Risk Management for a Global Supply Chain Planning Under Uncertainty: Models and Algorithms. AIChE Journal, 55(4).