ارائة مدلی برای انتخاب سبد پروژه با آثار متقابل و اشتراک منابع بین پروژه ای با استفاده از شبکه های عصبی مصنوعی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار گروه مدیریت صنعتی دانشکدۀ مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران

2 دانشجوی دکتری مالی دانشکدۀ مدیریت، دانشگاه تهران، تهران، ایران

3 دانشجوی دکتری مدیریت صنعتی دانشکدة مدیریت، دانشگاه تهران، تهران، ایران

چکیده

انبوه پروژه­های سازمانی و پیچیدگی­های تصمیم­گیری پیرامون آنها موجب می­شود مدیریت و رهبری پروژه، چالش­های ویژة خود را داشته باشد. از این‌رو و به‌منظور استفادة مطلوب از فرصت­ها و دارایی­های سازمان، لازم است مدیران با استقرار سیستم مدیریت جامع چندوجهی، سبد پروژة­ سازمان را تشکیل دهند و با لحاظ توجیه­های مناسب اقتصادی، فنی و اجتماعی آن را به انجام برسانند. همچنین، کمبود منابع موجب می‌شود مدیران همواره به‌دنبال انتخاب تعدادی از پروژه­های ممکن به­منظور اجرا یا اولویت­بندی باشند. در این تحقیق، با درنظرگرفتن آثار متقابل معیارها و اشتراک منابع پروژه­های سازمان، رویکردی برای ارزیابی و انتخاب پروژه­ها ارائه شد. در این مدل دومرحله­ای، ابتدا با تشکیل یک الگوریتم شاخه و کران و با درنظرگرفتن اشتراک منابع پروژه­ها، سبدهای بیشینه مشخص شد و سپس کارایی هرکدام  از این سبدها با استفاده از مدل شبکة عصبی مصنوعی ارزیابی شد تا سبدهای پروژه بر این اساس رتبه‌بندی شوند. علاوه‌براین، بین درجه‌های کارایی روش مورد استفاده در این مقاله با روش‌های DEA و COLS همبستگی قابل قبولی وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

A project portfolio selection model with project interaction & resources interdependency consideration using artificial neural networks

نویسندگان [English]

  • Behrooz Dorri 1
  • Behrang Asadi 2
  • Sasan Mazaheri 3
1 Associate Prof., Management and Accounting Faculty, Shahid Beheshti University, Tehran, Iran
2 PhD Candidate, Finance, University of Tehran, Tehran, Iran
3 PhD Candidate, Management- OR, University of Tehran, Tehran, Iran
چکیده [English]

 A vast number of organizational projects as well as complexity of decision making process can cause particular challenges for project management and its leadership. In order to use organization assets and opportunities efficiently, it is necessary that manager implement a comprehensive multidimensional project portfolio management system that considers economic, social and technical details of the projects. Resource constraint compels managers to select operational proposal projects. Thus managers can maximize organizational utility due to project portfolio’s resource constraint. This study considers the interactive effects of project portfolio evaluation and sharing organizational project resources with respect to its evaluation and choice of the projects.. In this two-step model, first a branch and bound algorithm with resource interaction was utilized to screen maximal portfolio and, in the next step, each portfolio was evaluated based on artificial neural networks to rank the end project portfolios. Also, the ANN scores are strongly correlated with the DEA and COLS efficiency scores.



 

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • interaction
  • maximal portfolio
  • Project Portfolio Selection
  • resource interaction
Archer, N. P. & Ghasemzadeh, F. (1999). An integrated framework for project portfolio selection. International Journal of Project Management, 17 (4): 207-216.
 
Artto, K. A., Dietrich, P. H. & Nurminen, M. I. (2004). Strategy by implementation of projects. Innovations-Project Management Research , PMI.
 
Azadeh, A., Anvari, M. & Saberi, M. (2010). An integrated artificial neural network algorithm for performance assessment and optimization of decision making units. Expert Systems with Applications, 37(8): 5688–5697. (In Persian )
Azadeh, A., Anvari, M. & Saberi, M. (2011). An integrated artificial neural network fuzzy c-means-normalization algorithm for performance assessment of decision making units: the cases of auto industry and power plant. Computers and Industrial Engineering, 60(2): 328-340. (In Persian)
 
Azadeh, A. et al. (2007b). An integrated artificial neural network and fuzzy clustering algorithm for performance assessment of decision making units. Applied Mathematics and Computation, 187(2): 584-599. (In Persian)
 
Azadeh, A., Ghaderi. F., Anvari, M. & Saberi, M. (2006). Performance assessment of electric power generations using an adaptive neural network algorithm. Energy Policy, 35(6): 3155–3166. (In Persian)
 
Badri, M. A. & Davis, D. (2001). A comprehensive 0–1 goal programming model for project selection. International Journal of Project Management, 19(4): 243-252.
 
Beaujon, G. J., Marin, S. P. & McDonald, G. C. (2001). Balancing and optimizing a portfolio of R & D projects. Naval Research Logistics, 48(1): 18-40.
 
Chang, P. T. & Lee, J. H. (2012). A fuzzy DEA and knapsack formulation integrated model for project selection. Computers and Operations Research, 39(1): 112-125.
 
Charnes, A., Cooper, W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operation Research, 2: 429-444.
 
Coelli, T. & Perelman, S. (1999). A comparison of parametric and nonparametric distance functions: with application to European railways. European Journal of Operations Research, 117(2): 326-339.
 
Cooper, R. G., Edgett, S. J. & Kleinschmidt, E. J. (1998). Best Practices for Managing R & Portfolios. Research Technology Management, 41(4): 20–33.
 
Cooper, R., Edgett, S. & Kleinschmidt, E. (2001). Portfolio management for new product development: results of an industry practices study. R & D Management, 31(4): 361- 380.
 
Costa, A. & Markellos, R. (1997). Evaluating public transport efficiency with neural network models. Transportation Research, 5(5): 301–312.
 
Costa, H., Barros, M. & Travassos, G. (2007). Evaluating software project portfolio risks.  Journal of Systems and Software, 80(1): 16-31.
Eilat H., Golany B. & Shtub, A. (2006). Constructing and evaluating balanced portfolios of R&D projects with interactions: A DEA based methodology. European Journal of Operational Research, 172(3): 1018–1039.
 
Fandel, G. & Gal, T. (2001). Redistribution of funds for teaching and research among universities: the case of North Rhine–Westphalia. European Journal of Operational Research, 130(1): 111-120.
 
Fried, H., Lovell, C. & Schmidt, S. (2008). The measurement of productive efficiency and productive growth, Oxford University Press. US.
 
Gear, T. E. & Cowie, G. C. (1980). A note on modeling project inter dependence in research and development. Decision Science, 11(4): 738–748.
 
Ghasemzadeh, F., Archer, N. & Iyogun, P. (1999). A Zero-One Model for Project Portfolio Selection and Scheduling. The Journal of the Operational Research Society, 50 (7): 745-755.
 
Ghorbani, S. & Rabbani, M. (2009). A new multi-objective algorithm for a project selection problem. Advanced Engineering Software, 40(1): 9-14. (In Persian)
 
Gustafsson, S. T. & Mild, P. (2004). Prospective evaluation of a cluster program for Finnish forestry and forest industries. International Transactions in Operational Research, 11(2): 139-154.
 
Halouani, N., Chabchoub, H. & Martel, J. M. (2009). PROMETHEE-MD-2T method for project selection. European Journal of Operational Research, 95(3): 841-849.
 
Hamel, G. & Prahalad, C. K. (1993). Strategy as stretch and leverage. Harvard Business Review, 71(2): 73-84.
 
Herrero, I. (2005). Different approaches to efficiency analysis: An application to the Spanish trawl feet operating in Moroccan water. European Journal of Operational Research, 167: 257-271.
 
Kendall, G. I. & Rollins, S. C. (2003). Advanced project portfolio management and the PMO, Multiplying ROI at Warp Speed, J. Ross Publishing, Inc.
 
Mavrotas, G., Diakoulaki, D. & Caloghirou, Y. (2006). Project prioritization under policy restrictions: A combination of MCDA with 0–1 programming. European Journal of Operational Research, 171(1): 296-308.
Patzelt, H., Knyphausen, D. & Fischer, H. (2009). Upper echelons and portfolio strategies of venture capital firms.  Journal of Business Venturing, 24(6): 558-572.
 
Pisinger, D. (2001). Budgeting with bounded multiple choice constraints. European Journal of Operational Research, 129(3): 471-480.
 
Rafiei, H. & Rabbani, M. (2009). Project selection using fuzzy group analytic network process. World Academy of Science, Engineering and Technology, 58:122-126. (In Persian)
 
Ramanathan, R. (2003). An Introduction to data envelopment analysis, Sage Publications. New Delhi.
 
Schmidt, R. L. (1993). A model for R & D project selection with combined benefit, outcome and resource interactions. IEEETransactions on Engineering Management. 40: 403–410.
 
Tikkanen, H., Kujala, J. & Artto, H. (2007). The marketing strategy of a project-based firm: The Four Portfolios Framework. Industrial Marketing Management, 36(2): 194-205.
 
Wang, S. )2003(. Adaptive non-parametric efficiency frontier analysis: a neural-network-based model. Computers and Operations Research, 30: 279-295.