Evaluating Cybersecurity Risks in IoT-Enabled Retail: A Hybrid Pythagorean Fuzzy-SWARA–ARTASI Approach

Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Industrial Engineering, Faculty of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran.

2 Assistant Prof., Department of Industrial Engineering, Faculty of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran.

3 Associate Prof., Department of Industrial Engineering, Faculty of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran.

10.22059/imj.2025.400267.1008259

Abstract

Objective: This study aims to identify and prioritize cybersecurity risks associated with IoT applications in the retail sector, an area critical to digital transformation and operational resilience. Given the challenges managers face in evaluating threats under uncertainty, the study introduces a novel methodological framework to enhance risk-based decision-making and strategic resource allocation. 
Methodology: A hybrid approach combining Pythagorean fuzzy SWARA (PF-SWARA) and an alternative ranking technique based on adaptive standardized intervals (PF-ARTASI) within the FMEA framework is proposed. PF-SWARA is used to weight evaluation criteria, and PF-ARTASI ranks the identified risks. The model is applied to a case study in Iran’s retail sector. Sensitivity and comparative analyses are conducted to validate the robustness and effectiveness of the method.
Results: The findings show that "Insecure Firmware/Software and Inadequate Patch Management" is the top cybersecurity risk, followed by "Lack of Standardization and Interoperability Issues" and "Physical Security concerns". The proposed PF-SWARA–ARTASI approach outperforms traditional FMEA and PF-MOORA methods in terms of result consistency, robustness, and practicality under uncertain conditions.
Conclusion: This research makes four contributions: (1) It proposes the first integration of PF-SWARA and PF-ARTASI within FMEA; (2) applies a novel ranking method for risk prioritization; (3) provides an actionable list of prioritized cybersecurity risks in IoT-enabled retail; and (4) validates the model through extensive sensitivity and comparative analysis. The study provides a valuable decision-making tool for IT managers and contributes to the existing literature on fuzzy risk assessment in retail contexts.

Keywords


Abdullah Sani, H. A., & Jaafar, N. I. (2025). Exploring the impact of IoT on governance and public service transformation: evidence from Malaysia’s public sector. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-10-2024-0453
Abu Al-Haija, Q., & Al-Dala’ien, M. A. (2022). ELBA-IoT: An ensemble learning model for botnet attack detection in IoT networks. Journal of Sensor and Actuator Networks, 11(1), 18. https://doi.org/10.3390/jsan11010018
Adapa, S., Fazal-e-Hasan, S. M., Makam, S. B., Azeem, M. M., & Mortimer, G. (2020). Examining the antecedents and consequences of perceived shopping value through smart retail technology. Journal of Retailing and Consumer Services, 52, 101901. https://doi.org/10.1016/j.jretconser.2019.101901
Aghazadeh, H., Mohammadi, M., Zadbar, H. (2018). Identifying and Comparing the Priority of Commercialization Services Required for Growing and Developing Companies Based in Tehran University Science and Technology Park. Industrial Management Journal, 10(4), 525–550. https://doi.org/10.22059/imj.2019.264596.1007480
Ahmetoglu, S., Che Cob, Z., & Ali, N. A. (2022). A systematic review of Internet of Things adoption in organizations: Taxonomy, benefits, challenges and critical factors. applied sciences, 12(9), 4117. https://doi.org/10.3390/app12094117
Akhilesh, K. B. (2019). Smart technologies—Scope and applications. In Smart Technologies: Scope and Applications (pp. 1–16). Singapore: Springer Singapore.https://doi.org/10.1007/978-981-13-7139-4_1
Akram, M., Ilyas, F., & Deveci, M. (2024). Interval rough integrated SWARA-ELECTRE model: An application to machine tool remanufacturing. Expert Systems with Applications, 238, 122067. https://doi.org/10.1016/j.eswa.2023.122067
Alkan, N. (2024). Evaluation of sustainable development and utilization-oriented renewable energy systems based on CRITIC-SWARA-CODAS method using interval valued picture fuzzy sets. Sustainable Energy, Grids and Networks, 38, 101263. https://doi.org/10.1016/j.segan.2023.101263
Alsheikh, M., Konieczny, L., Prater, M., Smith, G., & Uludag, S. (2021). The state of IoT security: Unequivocal appeal to cybercriminals, onerous to defenders. IEEE Consumer Electronics Magazine, 11(3), 59–68. 10.1109/MCE.2021.3079635
Altubaishe, B., & Desai, S. (2023). Multi-criteria decision making in supply chain management using FMEA and hybrid AHP-PROMETHEE algorithms. Sensors, 23(8), 4041. https://doi.org/10.3390/s23084041
Alvand, A., Mirhosseini, S. M., Ehsanifar, M., Zeighami, E., & Mohammadi, A. (2023). Identification and assessment of risk in construction projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: a case study of a construction project in Iran. International journal of construction management, 23(3), 392–404. https://doi.org/10.1080/15623599.2021.1877875
Amiri, M., Hosseini Dehshiri, S.J., Yousefi Hanoomandar, A. (2018). Determining the Optimal Combination of Larg Supply Chain Strategies Using SWOT Analysis, Multi-criteria Decision-making Techniques and Game Theory. Industrial Management Journal, 10(2), 221–246. https://doi.org/10.22059/imj.2018.257030.1007420
Ani, U. D., He, H., & Tiwari, A. (2019). Human factor security: evaluating the cybersecurity capacity of the industrial workforce. Journal of Systems and Information Technology, 21(1), 2–35. https://doi.org/10.1108/JSIT-02-2018-0028
Argyropoulou, M., Garcia, E., Nemati, S., & Spanaki, K. (2024). The effect of IoT capability on supply chain integration and firm performance: an empirical study in the UK retail industry. Journal of Enterprise Information Management, 37(3), 875–902. https://doi.org/10.1108/JEIM-06-2022-0219. https://doi.org/10.1108/JEIM-06-2022-0219
Aslan, Ö., Aktuğ, S. S., Ozkan-Okay, M., Yilmaz, A. A., & Akin, E. (2023). A comprehensive review of cybersecurity vulnerabilities, threats, attacks, and solutions. Electronics, 12(6), 1333. https://doi.org/10.3390/electronics12061333
Ayyildiz, E. (2022). A novel pythagorean fuzzy multi-criteria decision-making methodology for e-scooter charging station location-selection. Transportation Research Part D: Transport and Environment, 111, 103459. https://doi.org/10.1016/j.trd.2022.103459
Balali, A., Moehler, R. C., & Valipour, A. (2022). Ranking cost overrun factors in the mega hospital construction projects using Delphi-SWARA method: An Iranian case study. International Journal of Construction Management, 22(13), 2577–2585. https://doi.org/10.1080/15623599.2020.1811465
Behnia, F., Ahmadabadi, H. Z., Schuelke-Leech, B. A., & Mirhassani, M. (2023). Developing a fuzzy optimized model for selecting a maintenance strategy in the paper industry: An integrated FGP-ANP-FMEA approach. Expert Systems with Applications, 232, 120899. https://doi.org/10.1016/j.eswa.2023.120899
Birkel, H. S., & Hartmann, E. (2019). Impact of IoT challenges and risks for SCM. Supply Chain Management: An International Journal24(1), 39–61. https://doi.org/10.1108/SCM-03-2018-0142
Brous, P., Janssen, M., & Herder, P. (2020). The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations. International Journal of Information Management, 51, 101952. https://doi.org/10.1016/j.ijinfomgt.2019.05.008
Caro, F., & Sadr, R. (2019). The Internet of Things (IoT) in retail: Bridging supply and demand. Business Horizons, 62(1), 47–54. https://doi.org/10.1016/j.bushor.2018.08.002
Chanal, P. M., & Kakkasageri, M. S. (2020). Security and privacy in IoT: a survey. Wireless Personal Communications, 115(2), 1667–1693. https://doi.org/10.1007/s11277-020-07649-9
Chnina, K., & Daneshvar, S. (2024). Aggregation of Risk Management and Non-Parametric Models to Rank Failure Modes of Radio Frequency Identification Systems. Applied Sciences, 14(2), 584. https://doi.org/10.3390/app14020584
Dejon, N., Caputo, D., Verderame, L., Armando, A., & Merlo, A. (2019). Automated security analysis of IoT software updates. In IFIP International Conference on Information Security Theory and Practice (pp. 223–239). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-41702-4_14
De Vass, T., Shee, H., & Miah, S. J. (2018). The effect of “Internet of Things” on supply chain integration and performance: An organisational capability perspective. Australasian Journal of Information Systems, 22. https://doi.org/10.3127/ajis.v22i0.1734
De Vass, T., Shee, H., & Miah, S. J. (2021). Iot in supply chain management: a narrative on retail sector sustainability. International Journal of Logistics Research and Applications, 24(6), 605–624. https://doi.org/10.1080/13675567.2020.1787970
Đurđević, N., Labus, A., Barać, D., Radenković, M., & Despotović-Zrakić, M. (2022). An approach to assessing shopper acceptance of beacon triggered promotions in smart retail. Sustainability, 14(6), 3256. https://doi.org/10.3390/su14063256
Feng, X., Zhu, X., Han, Q. L., Zhou, W., Wen, S., & Xiang, Y. (2022). Detecting vulnerability on IoT device firmware: A survey. IEEE/CAA Journal of Automatica Sinica, 10(1), 25–41. https://doi.org/10.1109/JAS.2022.105860
Gamil, Y., A. Abdullah, M., Abd Rahman, I., & Asad, M. M. (2020). Internet of things in construction industry revolution 4.0: Recent trends and challenges in the Malaysian context. Journal of Engineering, Design and Technology, 18(5), 1091–1102. https://doi.org/10.1108/JEDT-06-2019-0164
Ghadimi, P., Donnelly, O., Sar, K., Wang, C., & Azadnia, A. H. (2022). The successful implementation of Industry 4.0 in manufacturing: An analysis and prioritization of risks in Irish industry. Technological Forecasting and Social Change, 175, 121394. https://doi.org/10.1016/j.techfore.2021.121394
Ghasemi, M., Saadaat, M., & Ghollasi, O. (2019). Threats of social engineering attacks against security of Internet of Things (IoT). In Fundamental Research in Electrical Engineering: The Selected Papers of The First International Conference on Fundamental Research in Electrical Engineering (pp. 957-968). Springer Singapore. https://doi.org/10.1007/978-981-10-8672-4_73
Gheidar-Kheljani, J. & Roshandel, S. (2021). Risk Assessment Based on Total Efficient Risk Priority Number Using Data Envelopment Analysis. Industrial Management Journal, 13(1), 131–154. https://doi.org/10.22059/imj.2021.310813.1007783
Ghiaci, A. M., & Ghoushchi, S. J. (2023). Assessment of barriers to IoT-enabled circular economy using an extended decision-making-based FMEA model under uncertain environment. Internet of Things, 22, 100719. https://doi.org/10.1016/j.iot.2023.100719
Ghoushchi, S. J., Garg, H., Bonab, S. R., & Rahimi, A. (2023). An integrated SWARA-CODAS decision-making algorithm with spherical fuzzy information for clean energy barriers evaluation. Expert Systems with Applications, 223, 119884. https://doi.org/10.1016/j.eswa.2023.119884
Görçün, Ö. F., Zolfani, S. H., & Çanakçıoğlu, M. (2022). Analysis of efficiency and performance of global retail supply chains using integrated fuzzy SWARA and fuzzy EATWOS methods. Operations Management Research, 15(3), 1445–1469. https://doi.org/10.1007/s12063-022-00261-z
Haseeb, J., Mansoori, M., & Welch, I. (2021). Failure modes and effects analysis (FMEA) of honeypot-based cybersecurity experiment for IoT. In 2021 IEEE 46th Conference on Local Computer Networks (LCN) (pp. 645-648). IEEE. https://doi.org/10.1109/LCN52139.2021.9525010
Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A survey on IoT security: application areas, security threats, and solution architectures. IEE Access, 7, 82721–82743. https://doi.org/10.1109/ACCESS.2019.2924045
Ho, T., Nguyen, H., Dinh, H., Pham, H., Pham, P., & Tham, U. (2025). Understanding customer opinions on IoT applications implemented in the retail industry worldwide and its implications for businesses in Vietnam. Journal of Systems and Information Technology, 27(1), 146–172. https://doi.org/10.1108/JSIT-02-2024-0035
Jafarzadeh Ghoushchi, S., Shaffiee Haghshenas, S., Memarpour Ghiaci, A., Guido, G., & Vitale, A. (2023). Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment. Neural computing and applications, 35(6), 4549-4567 https://doi.org/10.1007/s00521-022-07929-4
Jamme, H. T., & Connor, D. S. (2023). Diffusion of the Internet-of-Things (IoT): A framework based on smart retail technology. Applied Geography, 161, 103122. https://doi.org/10.1016/j.apgeog.2023.103122
Janatyan, N., Alavi, S., & Parvinian, M. (2025). A risk and reliability-based scheduling method for troubleshooting regulators in Gas pressure stations: A case study of Isfahan Gas company. Industrial Management Journal, 17(4), 56–75. https://doi.org/ 10.22059/imj.2025.387414.1008211
Kamble, S. S., Gunasekaran, A., Parekh, H., & Joshi, S. (2019). Modeling the internet of things adoption barriers in food retail supply chains. Journal of Retailing and Consumer Services, 48, 154–168. https://doi.org/10.1016/j.jretconser.2019.02.020
Kara, K., Yalçın, G. C., Kaygısız, E. G., Simic, V., Örnek, A. Ş., & Pamucar, D. (2024). A Picture Fuzzy CIMAS-ARTASI Model for Website Performance Analysis in Human Resource Management. Applied Soft Computing, 111826. https://doi.org/10.1016/j.asoc.2024.111826
Kardani Malekinezhad, M., Rahimnia, F., Eslami, G., & Farahi, M. M. (2025). Human resource analytics adoption: a framework-based analysis, fuzzy Delphi method and fuzzy SWARA. Journal of Advances in Management Research. https://doi.org/10.1108/JAMR-05-2024-0181
Kaur, M., Alzubi, A. A., Walia, T. S., Yadav, V., Kumar, N., Singh, D., & Lee, H. N. (2023). EGCrypto: a low-complexity elliptic galois cryptography model for secure data transmission in IoT. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3305271
Kaushik, K., & Dahiya, S. (2018). Security and privacy in IoT based e-business and retail. In 2018 International Conference on System Modeling & Advancement in Research Trends (SMART) (pp. 78–81). IEEE. https://doi.org/10.1109/SYSMART.2018.8746961
Khalil, G., Doss, R., & Chowdhury, M. (2020). A novel RFID-based anti-counterfeiting scheme for retail environments. IEEE Access, 8, 47952–47962. https://doi.org/10.1109/ACCESS.2020.2979264
Li, X., Li, H., Sun, B., & Wang, F. (2018). Assessing information security risk for an evolving smart city based on fuzzy and grey FMEA. Journal of Intelligent & Fuzzy Systems, 34(4), 2491-2501. https://doi.org/10.3233/JIFS-172097
Lorente-Martínez, J., Navío-Marco, J., & Rodrigo-Moya, B. (2020). Analysis of the adoption of customer facing InStore technologies in retail SMEs. Journal of Retailing and Consumer Services, 57, 102225. https://doi.org/10.1016/j.jretconser.2020.102225
Ma, B. J., Zhang, Y., Liu, S., Jiang, Y., He, Y., & Yan, K. (2022). Operational strategies for IoT-enabled Brick-and-Mortar retailers in a competitive market. Computers & Industrial Engineering, 173, 108665. https://doi.org/10.1016/j.cie.2022.108665
Maghami, M. R., Vahabzadeh, S., Mutambara, A. G. O., Ghoushchi, S. J., & Gomes, C. (2024). Failure analysis in smart grid solar integration using an extended decision-making-based FMEA model under uncertain environment. Stochastic Environmental Research and Risk Assessment, 38(9), 3543–3563. https://doi.org/10.1007/s00477-024-02764-6
Mock, R. G., López de Obeso, L., Zipper, C., & Schönenberger, M. (2016). Resilience assessment of internet of things: A case study on smart buildings. In Proceedings of the 26th European Safety and Reliability Conference (ESREL 2016) (pp. 2260–2267).
Mohammadzadeh, A. K., Ghafoori, S., Mohammadian, A., Mohammadkazemi, R., Mahbanooei, B., & Ghasemi, R. (2018). A Fuzzy Analytic Network Process (FANP) approach for prioritizing internet of things challenges in Iran. Technology in Society, 53, 124–134. https://doi.org/10.1016/j.techsoc.2018.01.007
Nazari-Shirkouhi, S., & Zarei Babaarabi, R. (2025). Enhancing decision-making in healthcare systems: lean, agile, resilient, green, and sustainable (LARGS) paradigm for performance evaluation of hospital departments under uncertainty. Industrial Management Journal, 17(2), 85–116. https://doi.org/ 10.22059/imj.2025.386420.1008208
Nayak, P., & Swapna, G. (2023). Security issues in IoT applications using certificateless aggregate signcryption schemes: An overview. Internet of Things, 21, 100641. https://doi.org/10.1016/j.iot.2022.100641
Okeke, R. I., & Eiza, M. H. (2023). The Application of role-based framework in preventing internal identity theft related crimes: A qualitative case study of UK retail companies. Information Systems Frontiers, 25(2), 451–472. https://doi.org/10.1007/s10796-022-10326-w
Ozkan-Okay, M., Akin, E., Aslan, Ö., Kosunalp, S., Iliev, T., Stoyanov, I., & Beloev, I. (2024). A comprehensive survey: Evaluating the efficiency of artificial intelligence and machine learning techniques on cyber security solutions. IEE Access12, 12229–12256. https://doi.org/10.1109/ACCESS.2024.3355547
Pamucar, D., Simic, V., Görçün, Ö. F., & Küçükönder, H. (2024). Selection of the best Big Data platform using COBRAC-ARTASI methodology with adaptive standardized intervals. Expert Systems with Applications, 239, 122312. https://doi.org/10.1016/j.eswa.2023.122312
Parra-Sánchez, D. T. (2025). Exploring the Internet of Things adoption in the Fourth Industrial Revolution: a comprehensive scientometric analysis. Journal of Innovative Digital Transformation, 2(1), 1–18. https://doi.org/10.1108/JIDT-06-2024-0013
Park, J. S., Ha, S., & Jeong, S. W. (2021). Consumer acceptance of self-service technologies in fashion retail stores. Journal of Fashion Marketing and Management: An International Journal, 25(2), 371–388. https://doi.org/10.1108/JFMM-09-2019-0221
Pino, A. F. S., Ruiz, P. H., Mon, A., & Collazos, C. A. (2024). Mechanisms for measuring technology maturity on the Internet of Things in enterprises: A systematic literature mapping. Internet of Things, 101100. https://doi.org/10.1016/j.iot.2024.101100
Rahnamay Bonab, S., & Osgooei, E. (2025). Environment risk assessment of wastewater treatment using FMEA method based on Pythagorean fuzzy multiple-criteria decision-making. Environment, Development and Sustainability27(9), 22185–22215. https://doi.org/10.1007/s10668-022-02555-5
Rizvi, S., Pipetti, R., McIntyre, N., Todd, J., & Williams, I. (2020). Threat model for securing internet of things (IoT) network at device-level. Internet of Things, 11, 100240. https://doi.org/10.1016/j.iot.2020.100240
Roe, M., Spanaki, K., Ioannou, A., Zamani, E. D., & Giannakis, M. (2022). Drivers and challenges of internet of things diffusion in smart stores: A field exploration. Technological Forecasting and Social Change, 178, 121593. https://doi.org/10.1016/j.techfore.2022.121593
Sadhu, P. K., Yanambaka, V. P., & Abdelgawad, A. (2022). Internet of things: Security and solutions survey. Sensors, 22(19), 7433. https://doi.org/10.3390/s22197433
Salim, M. M., Rathore, S., & Park, J. H. (2020). Distributed denial of service attacks and its defenses in IoT: a survey. The Journal of Supercomputing, 76, 5320–5363. https://doi.org/10.1007/s11227-019-02945-z
Sarvari, H., Baghbaderani, A. B., Chan, D. W., & Beer, M. (2024). Determining the significant contributing factors to the occurrence of human errors in the urban construction projects: A Delphi-SWARA study approach. Technological Forecasting and Social Change, 205, 123512. https://doi.org/10.1016/j.techfore.2024.123512
Schiller, E., Aidoo, A., Fuhrer, J., Stahl, J., Ziörjen, M., & Stiller, B. (2022). Landscape of IoT security. Computer Science Review, 44, 100467.
Serral, E., Vander Stede, C., & Hasić, F. (2020, June). Leveraging IoT in retail industry: a maturity model. In 2020 IEEE 22nd Conference on Business Informatics (CBI) (Vol. 1, pp. 114–123). IEEE. https://doi.org/10.1109/CBI49978.2020.00020
Sivaselvan, N., Bhat, K. V., Rajarajan, M., Das, A. K., & Rodrigues, J. J. (2023). SUACC-IoT: Secure unified authentication and access control system based on capability for IoT. Cluster Computing, 26(4), 2409–2428. https://doi.org/10.1007/s10586-022-03733-w
Soltanali, H., & Ramezani, S. (2023). Smart failure mode and effects analysis (FMEA) for safety–Critical systems in the context of Industry 4.0. In Advances in Reliability, Failure and Risk Analysis (pp. 151–176). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9909-3_7
Stergiou, C., Psannis, K. E., Gupta, B. B., & Ishibashi, Y. (2018). Security, privacy, and efficiency of sustainable cloud computing for big data & IoT. Sustainable Computing: Informatics and Systems, 19, 174–184. https://doi.org/10.1016/j.suscom.2018.06.003
Tariq, U., Ahmed, I., Bashir, A. K., & Shaukat, K. (2023). A critical cybersecurity analysis and future research directions for the internet of things: a comprehensive review. Sensors, 23(8), 4117. https://doi.org/10.3390/s23084117
Tian, Y., Song, S., Zhou, D., Pang, S., & Wei, C. (2023). Canonical triangular interval type-2 fuzzy set linguistic distribution assessment TODIM approach: A case study of FMEA for electric vehicles DC charging piles. Expert Systems with Applications, 223, 119826. https://doi.org/10.1016/j.eswa.2023.119826
Uddin, M. R., Akter, S., & Lee, W. J. T. (2024). Developing a data breach protection capability framework in retailing. International Journal of Production Economics, 271, 109202. https://doi.org/10.1016/j.ijpe.2024.109202
Verma, A., Verma, P., Farhaoui, Y., & Lv, Z. (Eds.). (2022). Emerging real-world applications of internet of things. CRC Press. DOI: 10.1201/9781003304203
Waqas, M., Kumar, K., Laghari, A. A., Saeed, U., Rind, M. M., Shaikh, A. A., ... & Qazi, A. Q. (2022). Botnet attack detection in Internet of Things devices over cloud environment via machine learning. Concurrency and Computation: Practice and Experience, 34(4), e6662. https://doi.org/10.1002/cpe.6662
Wazid, M., Das, A. K., Hussain, R., Succi, G., & Rodrigues, J. J. (2019). Authentication in cloud-driven IoT-based big data environment: Survey and outlook. Journal of Systems Architecture, 97, 185–196. https://doi.org/10.1016/j.sysarc.2018.12.005
Yaftiyan, F., Saghafi, F., & Hosseinzadeh, M. (2025). Analyzing key variables in recurrent carbon reduction policies using a hybrid approach: A focus on pharmaceutical distributors in Iran. Industrial Management Journal17(2), 1–26. https://doi.org/10.22059/imj.2025.392285.1008233
Yager, R. R. (2013). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS) (pp. 57–61). IEEE. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
Yalçın, G. C., Kara, K., & Senapati, T. (2024). A hybrid spherical fuzzy logarithmic decomposition of criteria importance and alternative ranking technique based on Adaptive Standardized Intervals model with application. Decision Analytics Journal, 11, 100441. https://doi.org/10.1016/j.dajour.2024.100441
Younis, H., Shbikat, N., Bwaliez, O. M., Hazaimeh, I., & Sundarakani, B. (2025). An overarching framework for the successful adoption of IoT in supply chains. Benchmarking: An International Journal.De Andrade, P. R., Patuzzo, G. V., & Cardoso, F. A. R. (2025). Industrial management: implementation of the TPM tool in a coffee industry. Brazilian Journal of Production Engineering, 11(1), 166–191. https://dx.doi.org/10.47456/bjpe.v11i1.46368