A Two-Stage DEA–PROMETHEE II Framework for Fully Ranking Global Retail Firms in a Competitive Environment

Document Type : Research Paper

Authors

1 Assistant Prof., Department of Industrial Engineering, Faculty of Engineering, Khatam University, Tehran, Iran.

2 MSc., Department of Industrial Engineering, Faculty of Engineering, Khatam University, Tehran, Iran.

10.22059/imj.2025.390860.1008230

Abstract

Objective: In the competitive global retail industry, achieving sustainable competitive advantage is a key factor for long-term success. This advantage arises when companies effectively utilize their unique resources and capabilities to outperform competitors. Operational efficiency and financial performance are critical for evaluating competitiveness and investment attractiveness. Data Envelopment Analysis (DEA) is a standard method for measuring efficiency, but classical DEA cannot fully rank efficient units. Integrating DEA with multi-criteria decision-making (MCDM) methods addresses this limitation, considering investor-relevant financial ratios. This study proposes a two-stage approach to evaluate and rank retail companies comprehensively. 
Methodology: In the first stage, an input-oriented CCR model of DEA is applied, with assets, operating expenses, and the number of employees as inputs, and total revenue and net profit as outputs, to assess relative efficiency. In the second stage, financial indicators—asset turnover, dividend yield, return on equity (ROE), return on assets (ROA), and return on investment (ROI)—alongside DEA efficiency scores are evaluated using the PROMETHEE II method to generate a complete preference-based ranking of retailers.
Results: DEA in the first stage provides relative efficiency insights but cannot rank efficient units. Employing PROMETHEE II in the second stage, and considering financial ratios, overcomes this limitation and produces a comprehensive ranking. Validation against DEA, hybrid DEA–PROMETHEE II, and hybrid DEA–AHP rankings demonstrates a strong alignment of the results with the actual market positions of retailers.
Conclusion: The proposed method enables investors to identify high-performing companies and provides retailers with a strategic tool to monitor competitiveness, identify strengths and weaknesses, optimize resource allocation, and achieve a sustainable competitive advantage.

Keywords


Abbasi, M., & Kaviani, M. A. (2016). Operational efficiency-based ranking framework using uncertain DEA methods: An application to the cement industry in Iran. Management Decision, 54(4), 902–928.  https://doi.org/10.1108/MD-09-2015-0413
Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. European Journal of Operational Research140(2), 249–265.
Alidrisi, H. (2021). DEA-Based PROMETHEE II Distribution-Center Productivity Model: Evaluation and Location Strategies Formulation. Appl. Sci.  11, 9567. https://doi.org/10.3390/app11209567
Alirezayee, M. R., & Rafiee Sani, M. R. (2010). A development on AHP/DEA methodology for ranking decision making units. Industrial Management Journal, 2(2): 5, 83–184.
Alirezaee, M., Rakhshan, S. A. & Rafiee Sani, M. (2012). Cross AHP/DEA method for ranking Decision Making Units. Industrial Management Journal4(1), 51–68.   10.22059/IMJ.2012.72259
Andersen, P., Petersen, N.C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39: 1261–1264. https://doi.org/10.1287/mnsc.39.10.1261
Bagherikahvarin, M., & de Smet, Y. (2016). A ranking method based on DEA and PROMETHEE II. Measurement: Journal of the International Measurement Confederation, 89, 333–342.
Bagherikahvarin, M. (2019). A DEA-Promethee approach for complete ranking of units. International Journal of Operational Research, 35(2), 224–244.  https://doi.org/10.1504/IJOR.2019.100726
Bardhan, I., Bowlin, W. F., Cooper, W. W., & Sueyoshi, T. (1996). Models for efficiency dominance in data envelopment analysis. Part I: Additive models and MED measures. Journal of the Operations Research Society of Japan, 39, 322–332. DOI: 10.15807/jorsj.39.322
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Cilek, A., & Seyranlıoğlu, O. (2024). Portfolio Optimization with Entropy-CRITIC-IDDWS-PROMETHEE Model in BIST Retail Trade Sector. International Journal of Economics and Financial Issues14(6), 23. https://doi.org/10.32479/ijefi.16982
Jorge Moreno, J. (2010). Productivity Growth of European Retailers: A Benchmarking Approach. Journal of Economic Studies, 37(3), 288–313.   https://doi.org/10.1108/01443581011061285
Gupta, A., & Mittal, S. (2010). Measuring retail productivity of food & grocery retail outlets using the DEA technique. Journal of Strategic Marketing, 18(4), 277–289. https://doi.org/10.1080/09652540903537055
Gandhi, A., & Shankar, R. (2014). Efficiency measurement of Indian retailers using Data Envelopment Analysis. International Journal of Retail and Distribution Management, 42(6), 500–520. https://doi.org/10.1108/IJRDM-10-2012-0094
Görçün, Ö. F., Shabir, M., Çalık, A., & Işık, Ö. (2025). Evaluation of the Financial Performance of the Textile and Apparel Industry in interval type-2 fuzzy environment. Applied Soft Computing, 113830. https://doi.org/10.1016/j.asoc.2025.113830
Jahanshahloo, G.R., Junior, H.V., Lotfi, F.H., Akbarian, D. (2007). A new DEA ranking system based on changing the reference set. European Journal of Operational Research, 181(1): 331–337. https://doi.org/10.1016/j.ejor.2006.06.012
Jalalvand, F., Teimoury, E., Makui, A., Aryanezhad, M. B., & Jolai, F. (2011). A method to compare supply chains of an industry. Supply Chain Management, 16(2), 82–97. https://doi.org/10.1108/13598541111115347
Karasakal, E., Eryılmaz, U., & Karasakal, O. (2022). Ranking using PROMETHEE when weights and thresholds are imprecise: A data envelopment analysis approach. Journal of the Operational Research Society, 73(9), 1978-1995https://doi.org/10.1080/01605682.2021.1963195
Khazaei, M., & Izadbakhsh, H. R. (2009). Combination of DEA and PCA for Full Ranking of Decision Making Units. Industrial Management Journal1(2).
Le, T. N., & Wang, C. N. (2017). The integrated approach for sustainable performance evaluation in value chain of vietnam textile and apparel industry. Sustainability (Switzerland), 9(3), 477. https://doi.org/10.3390/su9030477
Liu, J., Gong, Y. (Yale), Zhu, J., & Zhang, J. (2018). A DEA-based approach for competitive environment analysis in global operations strategies. International Journal of Production Economics, 203, 110–123.  https://doi.org/10.1016/j.ijpe.2018.05.029
Mahad, N. F., Aziz, N. A. A., Amin, F. A. M., & Mahyideen, J. M. (2021). An Integrated DEA and PROMETHEE II Method for Complete Ranking: An Application in Life-Insurance Sector. International Journal of Academic Research in Business and Social Sciences, 11(10), 982 – 992.  http://dx.doi.org/10.6007/IJARBSS/v11-i10/11123
Mohd Rashid, N. R., Huza, D. R. N. M., Naem, A. M., & Fauzan, F. A. S. (2023). Efficiency Measurement and Ranking of Water Supply Service Malaysia by Using Hybrid DEA and PROMETHEE II Method. In 4th International Conference on the Future of Asean 2022 (ICoFA, 2023) (pp. 41–49). Atlantis Press. Doi: 10.2991/978-2-38476-076-3_5
Mostafa, M. M. (2009). Benchmarking the US specialty retailers and food consumer stores using data envelopment analysis. International Journal of Retail & Distribution Management37(8), 661–679. https://doi.org/10.1108/09590550910966178
Okur, N., & Ercan, T. (2023). Evaluating retail efficiency using DEA and AHP: a case in the Turkish apparel retail industry. Journal of Fashion Marketing and Management: An International Journal27(1), 138–160. https://doi.org/10.1108/JFMM-06-2021-0154
Pande, S., Sengar, R., & Chaudhary, N. S. (2020). Evaluating performance of apparel retail stores using data envelopment analysis. International Journal of Business Excellence22(1), 19–32. https://doi.org/10.1504/IJBEX.2020.109211
Patel, G. N., & Bose, A. (2014). Seeking alternative DEA benchmarks. OPSEARCH, 51(1), 23-35.  https://doi.org/10.1007/s12597-013-0130-9
Putra, Z., & Muzakir, M. (2020). Competitive Environment Analysis in Global Retail Companies Operation Strategy: A Data Envelopment Analysis (DEA) Based Approach. AFEBI Management and Business Review, 5(1), 16–36.  https://doi.org/10.47312/ambr.v5i1.286
Rakhshan, S. A. and Alirezaee, M. R. (2014). Ranking of Decision Making Units by using of super efficiency non-radial model. Industrial Management Journal6(2), 303–316.  DOI: 10.22059/imj.2014.50680
Rouyendegh, B. D., Yildizbasi, A., & Yilmaz, I. (2020). Evaluation of retail ındustry performance ability through ıntegrated ıntuitionistic fuzzy TOPSIS and data envelopment analysis approach. Soft Computing24(16), 12255-12266. DOI:10.1007/s00500-020-04669-2
Sellers‐Rubio, R., & Mas‐Ruiz, F. (2007). An empirical analysis of productivity growth in retail services: evidence from Spain. International Journal of Service Industry Management18(1), 52–69. https://doi.org/10.1108/09564230710732894
Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New directions for program evaluation1986(32), 73–105. https://doi.org/10.1002/ev.1441
Sinuany-Stern, Z., Mehrez, A. and Hadad, Y. (2000). An AHP/DEA methodology for ranking decision-making units, International Transactions in Operational Research, 7(2), 109–124. https://doi.org/10.1111/j.1475-3995.2000.tb00189.x
Sharma, V., & Choudhary, H. (2011). Measuring operational efficiency of retail stores in chandigarh tri-city using DEA. Journal of Services Research, 10(2), 99.  link.gale.com/apps/doc/A243043293/AONE?u=anon~3057ac7b&sid=googleScholar&xid=87e860a6
Taherdoost, H., & Madanchian, M. (2023). Using PROMETHEE method for multi-criteria decision making: applications and procedures. Iris Journal of Economics & Business Management1(1). DOI: 10.33552/IJEBM.2023.01.000502
Takouda, P. M., & Dia, M. (2016). Relative efficiency of hardware retail stores chains in Canada. International Journal of Operational Research, 27(1/2), 275–290.  https://doi.org/10.1504/IJOR.2016.078465
Tavana, M., Bonyani, A., & Karimi, T. (2025). A full ranking method in data envelopment analysis with multi-criteria decision analysis. International Journal of Applied Management Science17(1), 1–26. https://doi.org/10.1504/IJAMS.2025.143653
Torgersen, A. M., Forsund, F. R., & Kittelsen, S. A. C. (1996). Slack-adjusted efficiency measures and ranking of efficient units. Journal of Productivity Analysis, 7, 379–398. https://doi.org/10.1007/BF00162048
Vincke, J. P., & Brans, P. (1985). A preference ranking organization method. The PROMETHEE method for MCDM. Management Science31(6), 647–656. http://dx.doi.org/10.1287/mnsc.31.6.647
Yadav, V. K., Padhy, N. P., & Gupta, H. O. (2009). Assessing the performance of electric utilities of developing countries: An intercountry comparison using DEA. 2009 IEEE Power and Energy Society General Meeting, PES ’09, (pp. 1–7). IEEE. https://doi.org/10.1109/PES.2009.5275273
Yu, W., & Ramanathan, R. (2008). An assessment of operational efficiencies in the UK retail sector. International Journal of Retail & Distribution Management, 36(11), 861–882. https://doi.org/10.1108/09590550810911656