Abbasi, E., Abu Noori, A., & Mohammadzadeh, M. (2011). Economic evaluation of bioethanol production from sugarcane waste. Financial Economics, 161–194. (in Persian).
Abbasi, M., & Pishvaee, M. S. (2019). A mathematical model for optimization in the biofuel supply chain network based on microalgae: A case study of Iran. 1st National Conference on Optimization and Novel Solution Methods. (in Persian).
Abbasi, M., Pishvaee, M. S., & Mohseni, S. (2021). Third-generation biofuel supply chain: A comprehensive review and future research directions.
Journal of Cleaner Production,
323, 129100. (in Persian).
https://doi.org/10.22075/jme.2022.23463.2096
Abdali, H., Sahebi, H., & Pishvaee, M. (2021). The water-energy-food-land nexus at the sugarcane-to-bioenergy supply chain: A sustainable network design model.
Computers & Chemical Engineering, 145, 107199.
https://doi.org/10.1016/j.cherd.2022.02.028
Arabi, M., & Yaghoubi, S. (2024). A Lagrangian relaxation approach for algae-based biofuel supply chain network design under uncertainty and pricing issue.
Environmental Science and Pollution Research, 1–21.
https://doi.org/10.1007/s11356-024-35428-7
Awino, F. B., & Apitz, S. E. (2024). Solid waste management in the context of the waste hierarchy and circular economy frameworks: An international critical review.
Integrated Environmental Assessment and Management, 20(1), 9–35.
https://doi.org/10.1002/ieam.4866.
Bahmani, P., Sadrabadi, M. H. D., Makui, A., & Jafari-Nodoushan, A. (2024). An optimization-based design methodology to manage the sustainable biomass-to-biodiesel supply chain under disruptions: A case study.
Renewable Energy, 120626.
https://doi.org/10.1016/j.renene.2024.120626
Bayramzadeh, S., & Saeedi, M. (2019). Design and planning of a dynamic integrated supply chain network for advanced hydrocarbon biofuels and oil refineries considering financial flows. Energy Policy and Planning Research, 2(5), 97–143. (in Persian).
Duc, D. N., Meejaroen, P., & Nananukul, N. (2021). Multi-objective models for biomass supply chain planning with economic and carbon footprint consideration.
EnergyReports,
7,6833-6843.
https://doi.org/10.1016/j.egyr.2021.12.139
Eslampanah, A., Jafarnezhad Chaghooshi, A., Heidary Dehu’i, J., & Taghizadeh Yazdi, M. R. (2023). Designing an industrial waste reverse supply chain network using an intelligent vehicular ad hoc network (VANET): A Iranian automotive industry case study.
Industrial Management,
15(3), 447–477. (in Persian).
https://doi.org/10.22059/imj.2023.363361.1008069
Fathi, M., Pahlevanzadeh, M. J., Safariniya, A., & Raeisi Nafchi, S. (2024). Designing a sustainable closed-loop supply chain network for automobile tires using a multi-objective mathematical programming approach: A case study. Journal of Green Development Management Studies, 3(1), 223–244. (in Persian).
https://doi.org/10.22077/jgdms.2024.7174.1068
Flores-Sigüenza, P., López-Sánchez, V., Mosquera-Gutiérrez, J., Llivisaca-Villazhaya, J., Moscoso-Martínez, M., & Guamán, R. (2025). Fuzzy Optimization and Life Cycle Assessment for Sustainable Supply Chain Design: Applications in the Dairy Industry.
Sustainability,
17(12), 5634.
https://doi.org/10.3390/su17125634.
Ghadge, A., Er Kara, M., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains.
Journal of Manufacturing Technology Management, 31(4), 669–686.
https://doi.org/10.1108/JMTM-10-2019-0368
Ghassemi, A., & Scott, M. J. (2021).
A mathematical approach to improve energy-water nexus reliability using a novel multi-stage adjustable fuzzy robust approach. In
Progress in Intelligent Decision Science: Proceedings of IDS 2020 (pp. 115–123).
Springer Cham.
https://doi.org/10.1007/978-3-030-66501-2_9
Ghorbani, N., Aghahosseini, A., & Breyer, C. (2020). Assessment of a cost-optimal power system entirely based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis.
Renewable Energy, 146, 125–148. (in Persian).
https://doi.org/10.1016/j.renene.2019.06.079
Ghozatfar, A., & Yaghoubi, S. (2023). A cooperation approach for nexus among biofuel, compost, and water in waste supply chain under risk aversion: A case study.
Computers & Chemical Engineering, 177, 108334.
https://doi.org/10.1016/j.compchemeng.2023.108334
Gilani, H., & Sahebi, H. (2024). Optimizing sustainable multiple biomass-to-biofuel conversion network with integrated water resource management utilizing data-driven robust planning.
Energy Conversion and Management: X,
24, 100727. (in Persian).
https://doi.org/10.1016/j.ecmx.2024.100727
Gilani, H., Sahebi, H., & Oliveira, F. (2020). Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model.
Applied Energy, 278, 115653. (in Persian).
https://doi.org/10.1016/j.apenergy.2020.115653
Gital, Y., & Bilgen, B. (2024). Biomass supply chain network design under uncertainty, risk and resilience: A systematic literature review.
Computers & Industrial Engineering, 189, 110270.
https://doi.org/10.1016/j.cie.2024.110270
Gomez, A., Rodrigues, M., Montanes, C., Dopazo, C., & Fueyo, N. (2011). The technical potential of first-generation biofuels obtained from energy crops in Spain.
Biomass and Bioenergy, 35(5), 2143–2155.
https://doi.org/10.1016/j.biombioe.2011.02.009
Habib, M. S., & Hwang, S.-J. (2024). Developing sustainable, resilient, and responsive biofuel production and distribution management system: A neutrosophic fuzzy optimization approach based on artificial intelligence and geographic information systems.
Applied Energy, 372, 123683.
https://doi.org/10.1016/j.apenergy.2024.123683
Habibi, F., Chakrabortty, R. K., & Abbasi, A. (2023). Towards facing uncertainties in biofuel supply chain networks: A systematic literature review.
Environmental Science and Pollution Research, 30(45), 100360–100390. (in Persian).
https://doi.org/10.1007/s11356-023-25845-7
Huang, X., Ji, L., Xie, Y., & Luo, Z. (2024). Robust optimization of regional biomass supply chain system design and operation with data-driven uncertainties.
Food and Bioproducts Processing. https://doi.org/10.1016/j.fbp.2024.11.021
Huang, X., Ji, L., Yin, J., & Huang, G. (2024). Optimal design, robust regional bioethanol supply chain operational management, and various technological choices and uncertainty fusions.
Computers & Chemical Engineering, 182,108565.
https://doi.org/10.1016/j.compchemeng.2023.108565
International Energy Agency. (2021). CO₂ emissions from fuel combustion: Highlights 2021. IEA. https://www.iea.org
Iranian Ministry of Energy. (2018). Iran’s energy industry and electricity sector report (in Persian). Ministry of Energy of Iran. http://www.moe.gov.ir
Jana, D. K., Bhattacharjee, S., Dostál, P., Janková, Z., & Bej, B. (2022). Bi-criteria optimization of cleaner biofuel supply chain model by novel fuzzy goal programming technique.
Cleaner Logistics and Supply Chain, 4, 100044.
https://doi.org/10.1016/j.clscn.2022.100044
Jiménez, M., Arenas, M., Bilbao, A., & Rodríguez, M. V. (2007). Linear programming with fuzzy parameters: An interactive method resolution.
European Journal of Operational Research, 177(3), 1599–1609.
https://doi.org/10.1016/j.ejor.2005.10.032
Kazemi Miyangaskari, M., Mehrregan, M. R., Safari, H., Keyvanpour, S., & Dehghan Nayeri, M. (2023). Designing a fuzzy multi-objective optimization model of a closed-loop supply chain aimed at supplier selection and order allocation (case study: food retail company in Iran).
Industrial Management Studies, 21(69), 1–42. (in Persian).
https://doi.org/10.22054/jims.2023.70278.2815
Kiani Mavi, R., Semiari, M., Hosseini Shekarabi, S. A., Kiani Mavi, N., Moshkdanian, F., Nikravesh, A., & Golsorkhi, S. (2025). Multi-Objective Optimization of a Three-Level Sustainable Food Supply Chain: Modeling the Impact of Government Subsidies.
Global Journal of Flexible Systems Management,
26(3), 571–600. (in Persian).
https://doi.org/10.1007/s40171-025-00454-y
Langholtz, M., Webb, E., Preston, B. L., Turhollow, A., Breuer, N., Eaton, L., King, A. W., Sokhansanj, S., Nair, S. S., & Downing, M. (2014). Climate risk management for the US cellulosic biofuels supply chain.
Climate Risk Management, 3, 96–115.
https://doi.org/10.1016/j.crm.2014.05.001
Maharana, D., Kommadath, R., & Kotecha, P. (2023). An innovative approach to the supply-chain network optimization of biorefineries using metaheuristic techniques.
Engineering Optimization, 55(8), 1278–1295.
https://doi.org/10.1080/0305215X.2022.2080204
Mahjoub, N., Sahebi, H., Mazdeh, M., & Teymouri, A. (2020). Optimal design of the second and third generation biofuel supply network by a multi-objective model.
Journal of Cleaner Production, 256, 120355. (in Persian).
https://doi.org/10.1016/j.jclepro.2020.120355
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation, 213(2), 455-465.
Mohammadi, A. S., Alem Tabriz, A., & Pishvaee, M. S. (2018). Designing a green closed-loop supply chain network with financial decisions under uncertainty.
Industrial Management Journal,
10(1), 61–84. (in Persian).
https://doi.org/10.22059/imj.2018.240867.1007303
Mohammadi, T., Sajadi, S. M., Najafi, S. E., & Taqizadeh Yazdi, M. R. (2022). Optimization of a smart supply chain under vendor-managed inventory policy with IoT-related technology selection.
Industrial Management,
14(3), 458-483. (in Persian).
https://doi.org/10.22059/IMJ.2022.343552.1007948
Mohseni, E., & Mohamadi, D. (2025). Integrated Optimization of Biofuel Supply Chain: A Fuzzy Logic-Based Approach.
Journal of Industrial Management Perspective,
15(2), 177–201. (in Persian).
https://doi.org/10.48308/jimp.15.2.177
Mohseni, S., & Pishvaee, M. S. (2016). A robust programming approach towards design and optimization of microalgae-based biofuel supply chain.
Computers & Industrial Engineering, 100, 58–71. (in Persian).
https://doi.org/10.1016/j.cie.2016.08.003
Mollahosseini, A., Hosseini, S. A., Jabbari, M., Figoli, A., & Rahimpour, A. (2017). Renewable energy management and market in Iran: A holistic review on current state and future demands.
Renewable and Sustainable Energy Reviews, 80, 774–788. (in Persian).
https://doi.org/10.1016/j.rser.2017.05.236
Mondal, A., Giri, B. K., & Roy, S. K. (2023). An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure.
Applied Energy, 343, 121225.
https://doi.org/10.1016/j.apenergy.2023.121225
Murillo-Alvarado, P. E., & Ponce-Ortega, J. M. (2024). Optimal planning of biofuel supply chains incorporating temporality of unconventional bioresources.
Environment, Development and Sustainability, 26(3), 7715–7733.
https://doi.org/10.1007/s10668-023-03028-z
Murillo-Alvarado, P. E., Guillén-Gosálbez, G., Ponce-Ortega, J. M., Castro-Montoya, A. J., Serna-González, M., & Jiménez, L. (2015). Multi-objective optimization of the supply chain of biofuels from residues of the tequila industry in Mexico.
Journal of Cleaner Production, 108, 422–441.
https://doi.org/10.1016/j.jclepro.2015.08.052
Nozari, H., Nassar, S., & Szmelter-Jarosz, A. (2025). Fuzzy multi-objective optimization model for resilient supply chain financing based on blockchain and IoT.
Digital,
5(3), 32.
(in Persian).
https://doi.org/10.3390/digital5030032
Pan, A., Xu, S., & Zaidi, S. A. H. (2024). Environmental impact of energy imports: Natural resources income and natural gas production profitability in the Asia-Pacific Economic Cooperation Countries.
Geoscience Frontiers, 15(2), 101756.
https://doi.org/10.1016/j.gsf.2023.101756
Paul, S., Mazumder, C., & Mukherjee, S. (2024). Challenges faced in commercialization of biofuel from biomass energy resources.
Biocatalysis and Agricultural Biotechnology, 103312.
https://doi.org/10.1016/j.bcab.2024.103312
Petridis, K., Grigoroudis, E., & Arabatzis, G. (2018). A goal programming model for a sustainable biomass supply chain network. International Journal of Energy Sector Management, 12(1), 79–102.
Qadir, S. A., Al-Motairi, H., Tahir, F., & Al-Fagih, L. (2021). Incentives and strategies for financing the renewable energy transition: A review.
Energy Reports, 7, 3590–3606.
https://doi.org/10.1108/IJESM-09-2017-0002
Rahbari, M., Khamseh, A. A., & Mohammadi, M. (2023). A novel multi-objective robust fuzzy stochastic programming model for sustainable agri-food supply chain: case study from an emerging economy.
Environmental Science and Pollution Research,
30(25), 67398-67442.
(in Persian).
https://doi.org/10.1007/s11356-023-26305-w1
Rahmandoust, A., Hafezalkotob, A., Rahmani Parchikolaei, B., & Azizi, A. (2023). Designing a multi-objective stable mathematical model for routing municipal waste collection vehicles.
Industrial Management,
15(4), 680–709. (in Persian).
https://doi.org/10.22059/imj.2023.350291.1007997
Ramírez-Arpide, F. R., Demirer, G. N., Gallegos-Vázquez, C., Hernández-Eugenio, G., Santoyo-Cortés, V. H., & Espinosa-Solares, T. (2018). Life cycle assessment of biogas production through anaerobic co-digestion of nopal cladodes and dairy cow manure.
Journal of Cleaner Production, 172, 2313–2322.
https://doi.org/10.1016/j.jclepro.2017.11.192
Ransikarbum, K., & Pitakaso, R. (2024). Multi-objective optimization design of sustainable biofuel network with integrated fuzzy analytic hierarchy process.
Expert Systems with Applications, 240, 122586.
https://doi.org/10.1016/j.eswa.2023.122586
Rashid Khan, H. U., Awan, U., Zaman, K., Nassani, A. A., Haffar, M., & Abro, M. M. Q. (2021). Assessing hybrid solar-wind potential for industrial decarbonization strategies: Global shift to green development.
Energies, 14(22), 7620.
https://doi.org/10.3390/en14227620
Seidl, P. R., & Goulart, A. K. (2016). Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts.
Current Opinion in Green and Sustainable Chemistry, 2, 48–53.
https://doi.org/10.1016/j.cogsc.2016.09.003
Suresh, S., Barboza, A. B., Ashwini, K., & Dinesha, P. (2024). Optimization of ANN Models Using Metaheuristic Algorithms for Prediction of Tailpipe Emissions in Biodiesel Engine.
Heat Transfer. https://doi.org/10.1002/htj.22972
Tong, K., Gleeson, M. J., Rong, G., & You, F. (2014). Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty.
Biomass and Bioenergy, 60, 108–120.
https://doi.org/10.1016/j.biombioe.2012.11.026
Wachyudi, T., Daryanto, A., Machfud, M., & Arkeman, Y. (2020). Biofuel supply chain risk mitigation strategy framework: Expert interview based approach.
Journal of Industrial Engineering and Management, 13(1), 179–194.
https://doi.org/10.3926/jiem.3127
Wang, M., Ji, L., Xie, Y., & Huang, G. (2024). Regional bioethanol supply chain optimization with the integration of GIS-MCDM method and quantile-based scenario analysis.
Journal of Environmental Management, 351, 119883.
https://doi.org/10.1016/j.jenvman.2023.119883
Yousefloo, A., Babazadeh, R., Mohammadi, M., Pirayesh, A., & Dolgui, A. (2023). Design of a robust waste recycling network integrating social and environmental pillars of sustainability.
Computers & Industrial Engineering, 176, 108970.
https://doi.org/10.1016/j.cie.2023.108970
Zarei, M., Shams, M. H., Niaz, H., Won, W., Lee, C.-J., & Liu, J. J. (2022). Risk-based multistage stochastic mixed-integer optimization for biofuel supply chain management under multiple uncertainties.
Renewable Energy, 200, 694–705. (in Persian).
https://doi.org/10.1016/j.renene.2022.09.012
Zarrinpour, N., & Khani, A. (2019). Design of second-generation green fuel supply chain from corn waste under uncertainty conditions. The 16th International Conference on Industrial Engineering. (in Persian).
Zema, D. A., Bombino, G., Andiloro, S., & Zimbone, S. M. (2012). Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values.
Agricultural Water Management, 115, 55–65.
https://doi.org/10.1016/j.agwat.2012.08.003
Zhang, Y., Jiang, Y., Zhong, M., Geng, N., & Chen, D. (2016). Robust optimization on regional WCO-for-biodiesel supply chain under supply and demand uncertainties.
Scientific Programming, 2016, 1087845.
https://doi.org/10.1155/2016/1087845
Zhao, X., Ke, Y., Zuo, J., Xiong, W., & Wu, P. (2020). Evaluation of sustainable transport research in 2000–2019.
Journal of Cleaner Production, 256, 120404.
https://doi.org/10.1016/j.jclepro.2020.120404
Zhou, T., Zhou, T., Li, Z., Aviso, K. B., Tan, R. R., Jia, X., & Wang, F. (2024). Multi-objective optimization of straw-based bio-natural gas supply chains considering cost, CO2 emission, and safety.
Journal of Cleaner Production, 449, 141759.
https://doi.org/10.1016/j.jclepro.2024.141759