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Objective: This study aims to design and optimize a sustainable biofuel supply chain 
focusing on water resource management, uncertainty reduction, and enhancing economic, 
environmental, and social performance. Sustainable biomass, such as Paulownia trees, 
and recycled water are considered key inputs, providing an integrated solution to the 
challenges posed by fossil fuels and the urgent need for renewable energy development.  

Methods: A multi-objective mathematical model is proposed to minimize costs, satisfy 
demand, and mitigate environmental impacts. The model incorporates uncertainties in 
supply and demand using the LP-metric method and applies the Fuzzy Analytic Hierarchy 
Process (FAHP) to weight objectives, ensuring balance among conflicting goals. 
Sensitivity analysis examines variations in biomass supply, prices, and demand, while 
Pareto frontier analysis evaluates trade-offs across objectives.   

Results: Results show that scenario-based modeling enables a comprehensive assessment 
of supply and demand impacts on supply chain performance. Incorporating wastewater 
and sewage sludge reduces pressure on natural resources and improves economic and 
environmental efficiency. The ε-constraint method generates Pareto-optimal solutions, 
offering decision-makers alternatives consistent with their priorities. Sensitivity analysis 
highlights that using Paulownia biomass and recycled water enhances flexibility, reduces 
risks, and promotes balance among economic, environmental, and social objectives, 
while lowering costs and unmet demand. 

Conclusion: This study provides a practical framework for designing and managing a 
sustainable biofuel supply chain by presenting a comprehensive and practical model. The 
findings can serve as a roadmap for developing renewable energy and resource efficiency 
in the energy sector. Additionally, the proposed model offers a robust decision-making 
tool under conditions of uncertainty and environmental and economic fluctuations. Its 
application can significantly support sustainable development policies and reduce 
dependence on fossil fuel resources. 
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Introduction 

Fossil fuels, characterized by their finite reserves and uneven distribution, account for a significant 

share of the global energy system and represent the primary source of greenhouse gas (GHG) 

emissions. Nevertheless, increasing energy demand, security concerns, the climate crisis, and the 

economic attractiveness of renewable resources have drawn growing attention to renewable energy 

(RE) as an alternative and sustainable source, playing a vital role in carbon reduction (Ghorbani et 

al., 2020). Among these resources, biomass has emerged as an appealing option and a sustainable 

substitute for conventional energy carriers such as coal, oil, and natural gas, due to its worldwide 

availability, favorable storage capabilities, and considerable potential (Wang & Hong, 2024). In 

Iran, the intensity of energy consumption and heavy reliance on fossil fuels are significantly higher 

than the global average, a situation that not only imposes substantial economic burdens but also 

results in serious environmental consequences, including air pollution and the rising emission of 

greenhouse gases (Kazemi et al., 2023). 

The limitations of fossil fuel resources and the environmental challenges associated with 

greenhouse gas emissions have necessitated the search for new and sustainable energy sources, 

particularly in energy-intensive sectors such as industry (Pandey et al., 2016). Heavy reliance on 

fossil fuels has increased greenhouse gas concentrations, especially carbon dioxide (CO₂), resulting 

in global warming (Rashid Khan et al., 2021). One of the most effective solutions for mitigating 

these environmental impacts is the adoption of biofuels, which are produced from renewable 

resources such as biomass. Biofuels, including bioethanol, biodiesel, and bio-jet fuels, are derived 

from cellulose-based organic compounds, primarily extracted from plants and agricultural products 

(Murillo-Alvarado & Ponce-Ortega, 2024). 

Biofuels, by capturing CO₂ during the cultivation process and exerting lower environmental 

impacts than fossil fuels, represent the largest renewable energy source. They can reduce 

dependence on fossil fuels and significantly mitigate greenhouse gas emissions (Koçar & Civaş, 

2013). Depending on their production sources, biofuels can be categorized into different 

generations, as illustrated in Figure 1 (Gomez et al., 2011).  
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Figure 1. Different generations of biofuels 

Among these, bioethanol and biodiesel are recognized as the most widely used biofuels, 

whereas bio-propane and bio-butane have received less attention (Seidl & Goulart, 2016). 

Numerous studies have investigated biomass feedstocks for biofuel production, including wheat 

straw, corn, sugarcane, and vegetable oils. At the same time, plants such as cactus and agave have 

also been identified as potential sources. However, most research has focused on food-based 

biomass such as corn and sugarcane, which may pose future challenges to the food industry. 

Therefore, exploring biochemical pathways and identifying non-food biomass sources that can be 

readily converted into fuels are essential for improving the biofuel supply chain and advancing 

sustainable energy development (Murillo & Ponce, 2024). 

With their unique characteristics, Paulownia trees have emerged as one of the most promising 

biomass resources for bioenergy production. This fast-growing tree can thrive in poor soils and 

harsh environmental conditions, making it suitable for cultivation across diverse geographical 

regions (Ghadge et al., 2020). Recent studies on the design of biofuel supply chain networks have 

demonstrated that using such non-food feedstocks not only alleviates pressure on agricultural 

resources but also enhances the overall sustainability of the supply chain (Mohammadi et al., 2022). 

Paulownia can reach maturity quickly and produce substantial volumes of woody biomass, 

rendering it a sustainable and practical resource for biofuel production. In addition, due to its high 

carbon dioxide absorption capacity, Paulownia is vital in reducing greenhouse gas emissions. It is 

regarded as an environmental solution for addressing climate change. Resistance to pests, low 

irrigation requirements, and reduced operational costs are further advantages that position 

Paulownia as an ideal feedstock for the biofuel supply chain (Abbasi & Pishvaee, 2019). 
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With its strategic location and abundant natural resources, Iran possesses significant potential 

for renewable energy production, particularly biomass, which can contribute to meeting energy 

demands and reducing dependence on fossil fuels. However, despite its vast fossil and non-fossil 

energy resources, the Iranian energy sector—especially the electricity industry—faces 

considerable challenges (Iranian Ministry of Energy, 2018). Air pollution, primarily caused by 

excessive fossil fuel consumption, has positioned Iran among the world’s top ten greenhouse gas 

emitters (International Energy Agency, 2021). Consequently, Iran's fossil fuel–based economy 

needs to be replaced with a more resilient and sustainable energy industry (Mollahosseini et al., 

2017). 

The biofuel supply chain network (BSCN) is a complex, multi-stage process that begins with 

the initial production of biomass and extends to the final distribution of fuels to consumers. Each 

stage requires optimization to enhance responsiveness or minimize costs (Qadir et al., 2021). The 

chain faces critical challenges, including ensuring a sustainable supply of feedstock, improving the 

efficiency of conversion processes, and designing effective distribution systems, all of which are 

vital for achieving sustainable biofuel development (Ramirez et al., 2019). Developing the biofuel 

supply chain with a strong focus on sustainability, supported by the integration of life cycle 

assessment (LCA) to address environmental and social dimensions, through a multi-objective 

optimization model, ensures the capacity of the network to meet the needs of future generations 

(Jakubowski, 2022). 

In addition to sustainability considerations, biofuel energy systems are highly dependent on 

water resources. Therefore, applying innovative decision-making approaches, such as fuzzy 

cognitive maps, for analyzing the interactions between water and energy can provide a more 

comprehensive and practical perspective on the sustainability of these systems (Ghasemi et al., 

2019). Optimizing decision-making in such systems requires thoroughly understanding their 

interactions and interrelationships with water resources (Yousefloo et al., 2023). Water plays a 

fundamental and critical role in biofuel production and in processes such as biomass cultivation, 

infrastructure development, cooling systems, and energy generation (Zhang & Vesselinov, 2016). 

Using municipal and industrial wastewater to supply water for biofuel networks can significantly 

reduce their dependence on freshwater resources while reinforcing the interconnection between 

water and energy systems (Zema et al., 2012). Nevertheless, additional challenges—such as 

financial constraints and political, economic, and managerial issues—have hindered progress in 

renewable energy projects (Jana et al., 2022). 

To overcome these challenges, multi-objective optimization based on fuzzy logic—capable of 

modeling uncertainty—can lead to more realistic decision-making in supply chains (Ransikarbum 

& Pitakaso, 2024). In a recent study, Mohseni and Mohammadi (2025) demonstrated that applying 

fuzzy multi-objective programming methods in designing energy supply networks can improve 
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decision-making under uncertainty and enhance supply chain resilience. By incorporating vague 

and imprecise data, fuzzy logic enables decision-makers to design more flexible networks while 

simultaneously reducing costs and emissions, thereby playing a critical role in improving the 

efficiency and sustainability of energy systems (Jana et al., 2022). 

This study aims to design and optimize a localized biofuel supply chain in Iran, employing 

fuzzy logic and water resource management to enhance economic, environmental, and operational 

sustainability. Using Paulownia biomass and forest wood residues, combined with intelligent water 

resource management, is targeted at reducing environmental impacts while improving financial 

efficiency. Dynamic facility location, warehouse risk management, and scenario-based supply and 

demand analysis under a fuzzy approach contribute to developing a flexible and sustainable supply 

chain that addresses environmental and economic requirements by leveraging local capacities. 

The remainder of this paper is structured as follows. Section 2 provides a detailed review of 

the theoretical foundations and prior literature, including studies on bioenergy supply chains, multi-

objective decision-making frameworks, water resource management issues, and approaches for 

addressing uncertainty. Section 3 presents the conceptual framework and introduces the model 

developed in this study, along with the analytical methods and tools employed. Section 4 discusses 

and analyzes the results obtained from implementing the model. Finally, Section 5 concludes the 

paper by summarizing the key findings, outlining practical implications, and suggesting directions 

for future research. 

Literature Background 

Theoretical Background 

Given the dominant share of fossil fuels in the national energy mix and the growing need for 

sustainable alternatives, the biofuel supply chain in Iran has gained particular significance. This 

chain, which encompasses all stages of biomass production, processing, and transportation, faces 

more complex and unique challenges than many other countries due to the country’s specific 

climatic conditions and water resource limitations (Mohammadi et al., 2022). 

The biofuel supply chain is a complex network comprising the production, transportation, and 

distribution of renewable fuels, and its optimization has become increasingly important for 

advancing sustainable development and reducing environmental impacts (Zhou et al., 2024). The 

network includes upstream, midstream, and downstream processes. In the upstream stage, biomass 

is cultivated in farms and preprocessed at specialized facilities to reduce volume and facilitate 

transportation. Dense biomass is transported to refineries or biogas facilities via different logistics 

modes. Finally, downstream processes are carried out to produce gasoline-equivalent products or 

to distribute electricity generated from biogas products (Habibi et al., 2023) . 
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The biofuel supply chain faces multiple challenges, including the sustainable supply of 

feedstock, high production and processing costs, market and price fluctuations, and issues related 

to transportation and storage. These challenges clearly highlight the necessity of adopting 

innovative and integrated approaches for effective management and optimization of the supply 

chain (Datta et al., 2019). In Iran, the dispersion of biomass resources and the weakness of energy 

transportation infrastructure are among the most significant barriers to developing the biofuel 

supply chain (Abbasi et al., 2021; Qadir et al., 2021). 

The biofuel supply chain, due to its reliance on renewable natural resources, the environmental 

issues associated with production and conversion processes, and the inherent uncertainties in 

feedstock supply, is considerably different from other supply chains and requires specific 

approaches for optimization and sustainability management (Abbasi et al., 2021). Managing and 

mitigating risks in every business context is one of the most significant challenges in today’s supply 

chains. Risk management is also unavoidable in the biofuel supply chain (Wachyudi et al., 2020). 

Since natural and climatic factors directly affect biomass resources, risk management enables 

predicting and mitigating potential disruptions, thereby ensuring the sustainability and efficiency 

of the energy supply system (Zarei et al., 2022). 

Risk management in the face of uncertainty is also considered essential (Zhou et al., 2024). In 

Iran, fluctuations in rainfall and recurring droughts have significantly increased the risk of biomass 

supply. Therefore, employing tools such as scenario planning and fuzzy models to analyze climatic 

and market impacts is even more critical compared to developed countries (Zarei et al., 2022). 

Uncertainty is an inherent characteristic of the biofuel supply chain, arising from various factors 

such as market fluctuations, climate variability, challenges in feedstock supply, and inaccurate 

forecasts of demand and consumption patterns. These uncertainties directly affect the performance 

and sustainability of the supply chain (Gital & Bilgen, 2024). Accordingly, using probabilistic 

models, scenario planning, and multi-objective optimization can assist in predicting and mitigating 

risks, thereby enhancing the resilience and sustainability of the system (Habib & Huang, 2024). 

Water resources play a fundamental role in biofuel production processes, as a significant share 

of water is consumed in biomass cultivation, conversion processes, and system cooling (Yousofloo 

et al., 2023). However, challenges such as declining water resources, the adverse impacts of climate 

change, and increasing competition among industrial sectors for water use pose serious threats to 

the sustainability of these supply chains (Zhang et al., 2016). Using recycled water and non-

freshwater sources can serve as suitable options for meeting water demands in these processes 

(Zama et al., 2012). Moreover, the complex interrelationship between water and energy in biofuel 

production implies that any optimization in one area can have significant effects on the other; thus, 

managing this nexus is of particular importance for reducing costs and enhancing sustainability 

(Murillo-Alvarado & Ponce-Ortega, 2024). In Iran, which is considered one of the highly water-
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stressed countries, the dependence of bioenergy processes on water resources creates an even 

greater challenge. Therefore, using industrial and municipal wastewater to cultivate energy crops 

can be a localized and effective solution (Yousofloo et al., 2023). 

Sustainable optimization of the biofuel supply chain has gained increasing importance as a key 

solution for addressing environmental crises, climate change, and the depletion of fossil resources, 

while supporting the provision of clean energy and reducing pollution (Wang & Hong, 2024). By 

emphasizing the balance among economic, environmental, and social objectives, this approach 

offers a comprehensive framework for efficient resource management and mitigating adverse 

environmental impacts such as greenhouse gas emissions. In this context, social objectives—such 

as creating sustainable employment, empowering local communities, and ensuring equitable 

distribution of benefits—play a pivotal role in improving quality of life and advancing sustainable 

development (Ramírez-Arpide et al., 2019). 

Various biofuel supply chain models have been developed as key tools for achieving 

sustainability. These models aim to optimize feedstock supply, production, and distribution 

processes, thereby reducing costs, lowering greenhouse gas emissions, and enhancing efficiency 

(Jana et al., 2022). Multi-objective models effectively balance economic, environmental, and social 

goals. Moreover, probabilistic and fuzzy models are widely applied to manage uncertainties. In 

contrast, spatio-temporal models, using tools such as Geographic Information Systems (GIS) for 

optimal facility location, further contribute to efficient supply chain management and sustainable 

development (Habib & Huang, 2024). 

Practical Background 

Extensive research has been conducted on the challenges of the biofuel supply chain and strategies 

to address them. Paul et al. (2024) examined the challenges associated with the commercialization 

of biofuels, including high production costs, feedstock price fluctuations, and market uncertainties. 

They emphasized the importance of adopting advanced technologies and supportive policies to 

enhance economic sustainability in this field. Wassie (2020) analyzed issues related to land 

cultivation and access to biological resources. Pan et al. (2024) studied greenhouse gas emissions 

and their environmental impacts. Abbasi et al. (2021) investigated the high transportation costs, 

while Qadir et al. (2021) highlighted the infrastructural requirements and necessities. 

Researchers have addressed this issue in studies focused on risk management in the biofuel 

supply chain. In their research, Zhou et al. (2024) examined risks arising from market uncertainties, 

including feedstock price volatility and demand fluctuations, which are crucial in supply chain 

sustainability. Langholtz et al. (2024), using a climate risk management framework, assessed the 

impact of drought on biomass production and the costs of the biofuel supply chain, emphasizing 

the importance of advanced technologies and improved logistics in reducing vulnerabilities. Ali 
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and Govindan (2023) also studied the role of transformation in reducing operational risks in the 

agri-food supply chain, demonstrating that adopting Industry 4.0 technologies can effectively 

mitigate supply chain disruptions, including financial and transportation challenges. 

Scenario planning, simulation, and applying probabilistic and fuzzy models have been widely 

recognized as practical tools for predicting and mitigating uncertainty. Through mathematical 

modeling, Huang et al. (2024) investigated the impact of technological choices and uncertainty 

management on enhancing the sustainability and efficiency of the bioethanol supply chain. Wang 

et al. (2024), by integrating the GIS-MCDM method with quantile scenario analysis, examined the 

optimization of the bioethanol supply chain and demonstrated that optimal facility location and 

resource management, under conditions of uncertainty and with governmental support, can 

effectively meet bioethanol demand. 

Fuzzy programming is another popular approach for addressing uncertainty. Mondal et al. 

(2023), by combining the DEMATEL method with a robust fuzzy-stochastic programming 

framework, proposed a model for optimizing the biofuel and bioenergy supply chain. This model 

improves the supply chain's sustainability and efficiency by analyzing causal relationships and 

incorporating uncertainty. 

Multi-objective modeling, emphasizing sustainability and other key aspects of the biofuel 

network, has recently attracted significant attention as an effective tool for optimizing and 

managing the supply chain. Bahmani et al. (2024), by proposing a multi-objective optimization 

model, examined the design and management of the biodiesel supply chain under disruption 

conditions. Their findings showed that by applying optimal strategies, the impacts of disruptions 

can be mitigated, costs can be managed, and supply chain resilience can be enhanced. 

Arabi and Yaghoubi (2024), using a Lagrangian approach and a bi-objective model under 

uncertainty; Huang et al. (2024), through mathematical modeling and robust optimization; and 

Zhou et al. (2024), by applying a mixed-integer linear programming (MILP) model, have all 

investigated the design and optimization of the biofuel supply chain. These studies emphasize 

critical aspects such as uncertainty, resilience, and sustainability in supply chain management. 

Zarrinpour et al. (2021), in their study, proposed a model that incorporates uncertainties by 

applying fuzzy interactive programming and the fuzzy best–worst method for weighting. Similarly, 

under uncertainty, Bayramzadeh and Saeedi (2019) examined a multi-objective possibilistic 

programming model for the second-generation biomass supply chain. 

Metaheuristic techniques have also emerged as modern approaches for designing and 

optimizing the biofuel supply chain, offering practical solutions to address complex and multi-

objective problems under constraints and uncertainty. Suresh et al. (2024), by optimizing artificial 

neural network (ANN) models with metaheuristic algorithms, provided accurate predictions of 
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biodiesel engine emissions. Their results indicated reductions in carbon monoxide (CO), unburned 

hydrocarbons (HC), and smoke, but an increase in nitrogen oxides (NOx), thereby underscoring 

the importance of such methods in improving biofuel supply chain performance. Maharana et al. 

(2023) optimized the biofuel supply chain network by developing a nonlinear mathematical model 

and applying a particle swarm optimization (PSO) algorithm. Their model effectively managed 

flow rate and capacity constraints by employing a repair operator, reducing total costs and 

enhancing supply chain performance. Table 1 summarizes prior biofuel supply chain optimization 

research, focusing on mathematical modeling, sustainability dimensions, and approaches for 

handling uncertainty. 

Table 1. Summary of biofuel supply chain studies 

Sources 
Type of 
Biofuel 

Model 
Type 

Sustainability 
Coping 

with water 
resource 

constraints 

Uncertaint
y 

modeling 
approach 

Uncertainty 
parameters 

Application/Innova
tion Ec

o 
En
v 

So
c 

(Mohseni & 
Mohammad

i, 2025) 

Forest 
waste 

Fuzzy 
Multilay

er 
   -- Fuzzy 

Supply and 
Demand 

Promoting 
Sustainability in 

the Biofuel Chain 
with a Fuzzy 

Approach 

(Fathi et al., 
2024) 

-- 

Fuzzy 
multi-

objectiv

e 

   -- Fuzzy Demand 

NSGA-II and 
MOPSO meta-

heuristic algorithms 
and Pareto front 

analysis 

(Murillo-
Alvarado & 

Ponce 
Ortega, 
2024) 

Mixed 
Sources 

Multi-

Objectiv
e 

  -- -- -- -- 

Reducing costs and 

greenhouse gas 
emissions 

(Rahmando
ost et al., 

2023) 

Municipal 
waste 

Robust 
multi-

objectiv
e + 

meta-

heuristic 

   -- Robust Demand 
Reducing 

collection costs and 
pollution 

(Islampanah 
et al., 2023) 

Industrial 
waste 

Inverse 
network 
design 
(VANE

T) 

  -- -- -- 
Capacity/Carry

ing Cost 
Using VANET in 
Reverse Logistics 

(Ghozatfar 
& Yaqoubi, 

2023) 

Municipal 
Solid 
Waste 

Single 
Objectiv

e 

 -- -- -- -- 
Conversion 
Rate Factor 

Focus on reducing 
processing costs 

(Yousefloo 
& 

Babazadeh, 
2023) 

Municipal 
Solid 
Waste 

Multi-
Objectiv

e 

   
Water 
Saving 

Random -- 

Emphasis on 
Optimal Water 

Consumption in the 
Chain 

(Mohamma
di et al., 
2022) 

-- 
Two- 

Objectiv
e 

 -- -- 
Water 

consumpti
on 

-- -- 

Internet of Things 
(IoT), Radio 
Frequency 

Identification 
(RFID), and 
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Blockchain in the 
Supply Chain 

(Abdali & 
Sahebi, 

2021) 

Sugarcane 
Multi-

Objectiv

e 

  -- 

Water 
Consumpti

on 

-- -- 

Integrating Water, 
Energy, Food, and 

Land in the 

Sugarcane Supply 
Chain 

(Gilani & 
Sahebi, 
2020) 

Sugarcane 
Multi-

Objectiv
e 

   -- 
Robust 

Optimizati
on 

Demand, Price 
Sustainable Design 
of the Sugarcane-
Bioethanol Chain 

(Mahjoub et 

al., 2020) 

Jatropha, 
microalga

e 

Multi-
Objectiv

e 

  -- -- 
Robust 

Optimizati
on 

-- 

Second and third 
generation chain 

with a multi-
objective model 

(Mohamma

di, Alem 
Tabriz & 
Pishvaee, 

2018) 

-- 

Fuzzy 
multi-

objectiv
e (green 
closed 
loop) 

   -- Fuzzy 
Fuzzy 

Constraints 

Integrating 
Financial Decisions 
in the Green Model 

(Petridis et 
al., 2018) 

Agricultur
al Waste 

Multi-
Objectiv

e 

   -- -- -- 
Sustainable 

biomass chain with 
ideal planning 

(Mohseni & 
Pishvaei, 

2016) 

Microalga
e 

Multi-
Objectiv

e 
  -- -- 

Robust 
Optimizati

on 

Cost and 
Demand 

Algae–Biofuel 
Chain with Solid 

Planning 

(Zhang et 
al., 2016) 

Edible oil 
Single- 

Objectiv
e 

 -- -- -- -- -- 

Robust 
optimization of the 
waste oil (WCO)-
based biodiesel 

chain 

Current 
Research 

Paulowni
a Tree 

and 
Forest 
Waste 

Multi-

Objectiv
e 

   
Wastewate

r 
Resources 

Random 
Supply and 

Demand 

Paulownia Biofuel 
Chain with Fuzzy 

Multi-Objective 
Approach and 

Water Management 

A review of previous studies indicates that although extensive research has been conducted on 

optimizing biofuel supply chains, many of these studies have addressed only limited aspects of 

sustainability. Less attention has been given to the optimization and integrated management of 

water resources, and Paulownia biomass—despite its high potential—has been rarely studied. To 

bridge these gaps, this research introduces the following innovations: 

 Proposing a comprehensive and integrated approach: Designing a biofuel supply chain 

incorporating sustainable water resource management while addressing economic, social, 

and environmental sustainability. 

 Focusing on Paulownia biomass: Examining Paulownia as a promising yet underexplored 

feedstock for biofuel production. 

 Incorporating wastewater and sludge treatment into the supply chain: Utilizing these 

resources as part of a circular economy to improve efficiency and minimize resource wastage. 
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 Warehouse risk management: Developing strategies to reduce warehouse vulnerability in the 

face of environmental and economic uncertainties. 

 Enhancing supply chain resilience: Improving supply chain flexibility against environmental 

changes and challenges arising from uncertainty. 

Materials and Methods 

Due to its complex nature and dependence on natural resources, the biofuel supply chain is 

influenced by uncertainties such as climate change, market fluctuations, and resource constraints. 

Therefore, designing a comprehensive multi-objective model for its optimization is essential. This 

study develops a multi-objective mathematical model that integrates stochastic and fuzzy 

approaches, enabling more accurate analysis of uncertainties and supporting improved decision-

making under real-world conditions. The model simultaneously focuses on economic 

sustainability, warehouse risk management, water resource management, and environmental 

performance enhancement. 

In this model, uncertainties in supply and demand—such as unpredictable variations in 

biomass production volume, market demand fluctuations, price changes, and environmental factors 

including weather conditions and natural disasters—are explicitly considered. Facility-related costs 

are also modeled using fuzzy logic to provide greater flexibility in decision-making. The objective 

functions of the model are designed to minimize total costs, reduce carbon emissions, and optimize 

economic and environmental impacts. Moreover, by managing warehouse-related risks, the model 

prevents delays or disruptions in biofuel supply, ensuring reliable access. Reducing unmet demand 

lowers dependence on more polluting or costly alternatives, thus generating positive social and 

environmental outcomes. 

The proposed biofuel supply chain structure is illustrated in Figure 2. This model consists of 

five tiers, including farms with primary drying units, two types of warehouses equipped with 

secondary drying units, preprocessing (conversion) centers, biogas facilities, and final consumers. 

In addition, water treatment centers are included to provide the required water for farms and 

facilities, and two types of vehicles with different capacities are employed for transportation. 
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Figure 2. Proposed structure of biofuel supply chain model 

The biomass utilized—consisting of wood residues and Paulownia trees—is harvested directly 

from farms, where its initial moisture content is reduced using on-site drying units before being 

transported to storage facilities. Two types of warehouses, namely constructible and rental, with 

varying capacities, are considered. The secondary moisture of the biomass is further reduced by 

drying units installed in the warehouses, ensuring optimal conditions for subsequent preparation 

stages. After storage and moisture reduction, the biomass is transported to preprocessing centers, 

where final preparations such as shredding and optimization for energy production are carried out. 

The processed materials are then delivered to biogas facilities, where they undergo refining 

processes and are converted into clean energy. The electricity generated through this process is 

transmitted directly to consumers, serving as a sustainable and renewable energy source to meet 

demand. 

The water required for the supply chain is sourced from recycled resources, including 

municipal wastewater and sewage sludge. This approach reduces reliance on freshwater resources 

and generates additional economic and environmental benefits by producing organic fertilizers 

during treatment. Water consumption and fertilizer production are modeled for sustainability 

analysis as stochastic variables. 

Two types of vehicles—trucks and trailers with different capacities—are employed, restricted 

to predefined selected routes. This ensures more efficient management and greater flexibility in the 

transportation of biomass across the supply chain. 

Model Assumptions 

 The primary biomass resources consist of Paulownia trees and forest residues. 

 The initial locations of farms, preprocessing centers, and biogas facilities are predetermined. 

 Drying units are installed at farms if crops are harvested from those farms. 

 Drying units are installed at warehouses if the warehouses are operational. 

 Energy demand and biomass supply are considered stochastic variables. 
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 The fixed costs of facility construction are modeled as uncertain and fuzzy parameters. 

 Two types of warehouses (rental and constructible) with varying capacities are considered, 

depending on the harvested volume and available budget. 

 Preprocessing centers are designed with three different capacity levels. 

 The capacity of biogas facilities is assumed to be fixed. 

 The transportation system consists of two vehicle types (trucks and trailers) operating along 

predefined routes. 

 The water required for facilities and the water and fertilizers required for farms are estimated, 

and recycled water production is adjusted accordingly. 

 In the proposed model, decisions regarding warehouse selection (construction or rental), the 

location of preprocessing centers and biogas facilities, the assignment of different capacity 

levels to these facilities, and the installation of water pipelines are all incorporated as part of 

the model development. 

The impacts of uncertain supply and demand are examined among the various aspects of 

uncertainty in the biofuel supply chain. To this end, the supply data are adjusted using uniform 

percentage variations (increases or decreases) to evaluate the model’s performance under different 

fluctuation conditions. For solving the multi-objective model, the ε-constraint method is employed, 

which, by generating a set of Pareto-optimal solutions, enables the provision of optimal and 

sustainable decisions under uncertainty. This method effectively balances conflicting objectives, 

including environmental and economic goals, and facilitates the selection of optimal decision-

making pathways for policymakers (Duc et al., 2021). 

Furthermore, the fixed costs of establishing facilities such as warehouses, preprocessing 

centers, and refineries are modeled using fuzzy logic to more realistically consider the actual 

fluctuations associated with investment and operational costs. For these costs, three levels are 

defined: minimum (representing optimistic conditions), most likely (representing normal 

conditions), and maximum (representing pessimistic conditions). 

Integrating the fuzzy approach with the ε-constraint method allows evaluating model 

performance under different conditions, including optimistic and pessimistic scenarios. This 

integration allows decision-makers to examine the effect of changes in investment costs on various 

objectives, including reducing total costs, minimizing unmet demand, and reducing greenhouse gas 

emissions. Finally, sensitivity analysis is carried out by considering different parameters to 

demonstrate the vital role of the model in establishing a balance between conflicting objectives and 

to validate the robustness of the model results under uncertainty. 
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Mathematical Modeling 

The proposed model is a Mixed-Integer Linear Programming (MILP) model, the components of 

which are introduced as follows: 

Sets  

Notation Description 

𝑎 Set of wastewater sources 

h Set of wastewater treatment plants and effluent lagoons 

i Set of harvested farmlands (wood biomass and Paulownia trees) 

p Set of harvested product types (wood biomass or Paulownia trees) 

j Set of buildable warehouses 

j' Set of rental warehouses 

k Set of preprocessing centers 

k' Set of capacity levels for preprocessing centers 

m Biomass moisture percentage level 

r Set of biogas facilities 

d Set of demand centers 

A1 Set of selected transportation routes from farms to buildable or rental warehouses 

A2 Set of selected transportation routes from warehouses to preprocessing centers 

A3 Set of selected transportation routes from preprocessing centers to biogas facilities 

A4 Set of selected transportation routes from biogas facilities to demand centers 

Economic Parameters 

Notation Description 

fcws1̃ Fixed cost of constructing a buildable warehouse j₁ (fuzzy) 

fcws2̃ Fixed cost of renting warehouse j₂ (fuzzy) 

fcwc𝑘𝑘′̃  Fixed cost of establishing preprocessing center k with capacity level K′ (fuzzy) 

fcBG̃ Fixed cost of establishing a biogas facility (fuzzy) 

𝑐𝑣̃ Biomass purchase cost (fuzzy) 

fcdrs̃ Fixed cost of installing a drying device on the farm (fuzzy) 

fcdrws̃  Fixed cost of installing a drying device in warehouses (fuzzy) 

fctru1̃ Fixed cost of truck rental for biomass transport to warehouses and preprocessing centers (fuzzy) 

fctru2̃ Fixed cost of tank trailer (truck) rental for transporting processed biomass and biogas (fuzzy) 

𝑐𝑡 Fuel cost for transportation 

𝑐𝑣𝑤 Labor cost for collecting biomass type p from farm i 

𝑐𝑣𝑤𝑐 Labor cost for employees at the preprocessing centers 

𝑐𝑣𝐵𝐺 Labor cost for employees at biogas facilities 

𝑐𝑣𝑤𝑠 Labor cost for storage and drying of biomass 

𝐶𝑅𝐹ℎ𝑖 Transportation cost of fertilizer from treatment center h to farm i 

𝐶𝑅𝑊𝑎ℎ Transportation cost of sludge and effluent from the wastewater source a to the treatment center h 

𝐹𝐶𝑃𝐴ℎ𝑘 Construction cost of water pipeline between treatment center h and preprocessing center k 

𝐹𝐶𝑃𝐵ℎ𝑟 Construction cost of water pipeline between treatment center h and biogas facility r 

𝐹𝐶𝑃𝐽ℎ𝑖 Construction cost of water pipeline between treatment center h and farm i 

𝐶𝑇𝐽 Wastewater treatment cost for supplying irrigation water to farms (per cubic meter) 

𝐶𝑇𝐴 
Wastewater treatment cost for supplying operational water to preprocessing centers (per cubic 

meter) 

𝐶𝑇𝐵 Wastewater treatment cost for supplying operational water to biogas facilities (per cubic meter) 

𝐶𝑇𝐹 Cost of wastewater separation and conversion to fertilizer for farm use (per cubic meter) 

Environmental Parameters 

Notation Description 
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𝐸𝑊𝑆 Greenhouse gas emissions from warehouse construction per square meter of warehouse space 

𝐸𝑊𝐶1 
Greenhouse gas emissions from the preprocessing center construction per square meter of center 

space 

𝐸𝑊𝐶2 Greenhouse gas emissions from processing each ton of biomass in the preprocessing centers 

𝐸𝐵𝐺1 Greenhouse gas emissions from biogas facility construction per square meter of facility space 

𝐸𝐵𝐺2 Greenhouse gas emissions from the entry of each ton of biomass into biogas facilities 

𝑒𝑝𝑡 CO₂ emission factor for transportation by truck (grams per kilometer) 

𝑒𝑡𝑡 CO₂ emission factor for transportation by tank trailer (grams per kilometer) 

𝐸𝐽𝑃ℎ𝑖 
Greenhouse gas emissions from constructing a pipeline between treatment center h and farm i per 

meter of pipe 

𝐸𝐴𝑃ℎ𝑘 
Greenhouse gas emissions from constructing a pipeline between treatment center h and 

preprocessing center k per meter of pipe 

𝐸𝐵𝑃ℎ𝑘 
Greenhouse gas emissions from constructing a pipeline between the treatment center h and the 

biogas facility r per meter of pipe 

𝐸𝑇𝐹 Greenhouse gas emissions from transporting 1 ton of produced fertilizer 

𝐸𝑆𝑊 Greenhouse gas emissions from transporting 1 ton of sludge and effluent 

Warehouse risk parameters 

Notation Description 

𝛿𝑆 Standard deviation of storage capacity in the warehouse 

𝑤𝑟 Waste and damage rate of goods in the warehouse 

Dt Delivery delay is considered a risk factor 

𝑆𝐼 Warehouse safety index, whose inverse is considered a safety risk 

𝛼 Storage cost coefficient of biomass in the warehouse 

𝛽 Waste risk coefficient in the warehouse 

𝛾 Insurance cost risk coefficient for biomass in the warehouse 

𝛿 Delivery delay coefficient for biomass in the warehouse 

𝜃 Safety index coefficient for biomass in the warehouse 

Technical Parameters 

Notation Description 

𝑐𝑎𝑝𝑤𝑠1𝑗1 Capacity of buildable warehouse j₁ 

𝑐𝑎𝑝𝑤𝑠2𝑗2 Capacity of rental warehouse j₂ 

𝑐𝑎𝑝𝑤𝑐𝑘𝑘′ Capacity of preprocessing center k at level k′ 

𝑐𝑎𝑝𝐵𝐺𝑟 Capacity of biogas refinery r 

𝑐𝑎𝑝𝑡𝑟𝑢1 Truck transport capacity 

𝑐𝑎𝑝𝑡𝑟𝑢2 Tank trailer (truck) transport capacity 

𝑓𝑝𝑡  Fuel consumption rate for truck transportation (km per liter) 

𝑓𝑡𝑡  Fuel consumption rate for tank trailer transportation (km per liter) 

𝑐𝑟𝑊−𝐵𝐺 Conversion rate from biomass to biogas (cubic meters per ton) 

𝑐𝑟𝑚𝑘  Conversion factor in megawatts 

𝑐𝑟𝐵𝐺−𝐸  Conversion rate from biogas to electricity (cubic meters per ton) 

dmin Minimum agreement on electricity produced for the community (percentage) 

q1 Minimum capacity (5 MW) for biogas facility 

q2 Minimum capacity (6 MW) for biogas facility 

q3 Minimum capacity (7 MW) for biogas facility 

q4 Minimum capacity (8 MW) for biogas facility 

q5 Minimum capacity (9 MW) for biogas facility 

𝑀 A sufficiently large number (Big-M) 

𝑀𝑊𝑀𝑖 Maximum amount of wood biomass in farm i 

𝑑𝑤𝑠1𝑖𝑗1𝑝𝐴1 Distance of route A1 from farm i to buildable warehouse j₁ 

𝑑𝑤𝑠2𝑖𝑗2𝑝𝐴1 Distance of route A1 from farm i to rental warehouse j₂ 
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𝑑𝑤𝑐1𝑗1𝑘𝑝𝐴2 Distance of route A2 from buildable warehouse j₁ to preprocessing center k 

𝑑𝑤𝑐2𝑗2𝑘𝑝𝐴2 Distance of route A2 from rental warehouse j₂ to preprocessing center k 

𝑑𝐵𝐺𝑘𝑟𝐴3 Distance of route A3 from preprocessing center k to biogas facility r 

𝑀𝑆𝑊𝑎 Maximum level of sludge and effluent available at wastewater source a 

𝐶𝐴𝑃𝑇𝑅𝐸𝑇ℎ Maximum acceptable capacity of sludge and effluent at treatment center h 

𝑃𝐼𝑃𝑀𝐽ℎ𝑖 Maximum pipeline capacity for irrigation water transfer from treatment center h to farm i 

𝑃𝐼𝑃𝑀𝐴ℎ𝑘 
Maximum pipeline capacity for operational water transfer from treatment center h to 

preprocessing center k 

𝑃𝐼𝑃𝑀𝐵ℎ𝑟 
Maximum pipeline capacity for operational water transfer from treatment center h to biogas 

facility r 

𝐹𝐹𝑖 Amount of fertilizer required for planting Paulownia trees in farm i 

𝑊𝐵𝑊𝑖 Amount of water required for cultivating Paulownia trees in farm i 

𝑊𝐵𝐶𝑘 Amount of water required for biomass processing in preprocessing center k 

𝑊𝐵𝐺𝑟 Amount of water required for biomass-to-biogas conversion in biogas facility r 

𝛾2 Conversion factor from sludge and effluent to fertilizer (tons) 

𝛽2 Conversion factor from sludge and effluent to treated water (cubic meters per ton) 

𝜑 Paulownia tree growth factor with sufficient water and fertilizer supply 

Random variables 

Notation Description 

𝑆𝑖𝑝 Amount of biomass type p supplied from farm i 

𝑑𝑑 Electricity demand for each demand center d 

Continuous decision variables 

Notation Description 

𝐿𝑖𝑝𝑚 Total amount of biomass type p purchased from farm i with moisture level m 

𝑖𝑛𝑣1𝑗1𝑝𝑚  Amount of biomass type p stored in buildable warehouse j₁ with moisture level m 

𝑖𝑛𝑣2𝑗1𝑝𝑚 Amount of biomass type p stored in rental warehouse j₂ with moisture level m 

𝑑𝑖𝑛𝑣1𝑗1𝑝𝑚𝑚′ 
Amount of biomass type p dried in buildable warehouse j₁, from moisture level m to m′ 

(secondary moisture reduction in warehouse) 

𝑑𝑖𝑛𝑣2𝑗2𝑝𝑚𝑚′ 
Amount of biomass type p dried in rental warehouse j₂, from moisture level m to m′ (secondary 

moisture reduction in warehouse) 

𝑀𝑘 Amount of biomass processed in the preprocessing center k 

𝑁𝑟 Amount of wood chips used in the biogas facility r 

𝐵𝑑 Amount of biogas produced for the demand center d 

𝐸𝑑 Amount of electricity produced for the demand center d 

𝑌𝐵𝐺𝑟 Decision variable for establishing a biogas facility r 

𝑋𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1 
Flow/quantity of biomass type p with moisture level m from farm i to buildable warehouse j₁ via 
selected route A1 

𝑋𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1  
Flow/quantity of biomass type p with moisture level m from farm i to rental warehouse j₂ via 

selected route A1 

𝑋𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2  
Flow/quantity of biomass type p with moisture level m from buildable warehouse j₁ to 

preprocessing center k via selected route A2 

𝑋𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2  
Flow/quantity of biomass type p with moisture level m from rental warehouse j₂ to preprocessing 

center k via selected route A2 

𝑋𝐵𝐺𝑘𝑟𝐴3 
Flow/quantity of processed biomass from preprocessing center k to biogas facility r via selected 

route A3 

𝑋𝐷𝑑𝑟𝐴4 
Flow/quantity of electricity produced for the demand center d from the biogas facility r via 

selected route A4 

𝑈𝑑𝑑 Amount of unmet electricity demand for the demand center d 

𝑆𝑊𝑎ℎ Flow/quantity of sludge and effluent from wastewater source a to treatment center h 

𝑇𝐽ℎ𝑖 Flow/quantity of treated water from treatment center h to farm i 
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𝑇𝐴ℎ𝑘 Flow/quantity of treated water from treatment center h to preprocessing center k 

𝑇𝐵ℎ𝑟 Flow/quantity of treated water from treatment center h to biogas facility r 

𝑇𝐹ℎ𝑖 Flow/quantity of produced fertilizer from treatment center h to farm i 

Binary decision variables 

Notation Description 

Installing a drying machine on the farm i 𝑑𝑟𝑠𝑖 
Installing a drying machine in the constructed warehouse j1 𝑑𝑟𝑤𝑠1𝑗1 

Installing a dryer in a rented warehousej2 𝑑𝑟𝑤𝑠2𝑗2 

Setting up a buildable warehousej1 𝑌𝑤𝑠1𝑗1 

Use of rented warehouse j2 𝑌𝑤𝑠2𝑗2 

Installing a preprocessing center k with capacity k' 𝑌𝑤𝑐𝑘𝑘′ 
Using a truck to transport biomass from farm i to the constructed warehouse j1 via the selected 

route A1 
𝑡𝑟𝑢𝑠𝑤1𝑖𝑗1𝐴1 

Using a truck to transport biomass from farm i to rental warehouse j2 via the selected route A2 𝑡𝑟𝑢𝑠𝑤2𝑖𝑗2𝐴1 

Using a truck to transport biomass from the constructed warehouse j1 to the pre-processing 

center k via the selected route A2 
𝑡𝑟𝑢𝑤𝑐1𝑗1𝑘𝐴2 

Using a truck to transport biomass from rental warehouse j2 to pre-processing center k via 

selected route A2 
𝑡𝑟𝑢𝑤𝑐2𝑗2𝑘𝐴2 

Using a tank truck to transport the processed biomass from the pre-processing center k to the 

biogas facility r via the selected route A3 
𝑡𝑟𝑢𝐵𝐺𝑘𝑟𝐴3 

Using a tank truck to transport biogas produced from biogas facilities r to applicants d via the 

selected route A4 
𝑡𝑟𝑢𝑑𝑟𝑑𝐴4 

Transport of biomass type p with moisture percentage m from farm i to constructed warehouse j1 

via selected route A1 
𝑊𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1  

Transport of biomass type p with moisture percentage m from farm i to rental warehouse j2 via 

selected route A1 
𝑊𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1  

Transfer of biomass type p with moisture percentage m from the constructed warehouse j1 to the 

pre-processing center k via the selected route A2 
𝑊𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2 

Transport of biomass type p with moisture percentage m from rental warehouse j2 to pre-

processing center k via selected route A2 
𝑊𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2 

Binary variable equal to 1 if processed biomass is transported from preprocessing center k to 
biogas facility r via selected route A3; 0 otherwise 

𝑊𝐵𝐺𝑘𝑟𝐴3 

Binary variable to enforce the minimum installed capacity (5 MW) for a biogas facility Qr
1 

Binary variable to enforce the minimum installed capacity (6 MW) for a biogas facility Qr
2 

Binary variable to enforce the minimum installed capacity (7 MW) for a biogas facility Qr
3 

Binary variable to enforce the minimum installed capacity (8 MW) for a biogas facility Qr
4 

Binary variable to enforce the minimum installed capacity (9 MW) for a biogas facility Qr
5 

Binary variable equal to 1 if the water pipeline from treatment center h to farm i is used; 0 

otherwise 
𝑊𝐽ℎ𝑖 

Binary variable equal to 1 if the water pipeline from treatment center h to preprocessing center k 

is used; 0 otherwise 
𝑊𝐴ℎ𝑘 

Binary variable equal to 1 if the water pipeline from treatment center h to biogas facility r is 

used; 0 otherwise 
𝑊𝐵ℎ𝑟 

Model Objective Functions 

The proposed model focuses on optimizing four key objectives: cost, environmental impact, social 

impact, and warehouse-related risk. 
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Economic Objective Function 

The economic objective function encompasses several cost components, including biomass 

purchase cost (BPC), drying cost (DRC), warehouse operation cost (INC), pre-processing center 

cost (PCC), biogas facility cost (BFC), water transfer cost (WTC), and transportation cost (TC). 

This objective can be mathematically represented as shown in Equation (1): 

(1) Min Z1 =BPC+DRC+INC+TC+WC+PCC+BFC+WTC 

The expenses associated with purchasing biomass and the wages of farm workers are outlined 

in Equation (2).  

(2) BPC =∑∑∑𝑐𝑣̃(𝐿𝑖𝑝𝑚) +∑∑∑𝑐𝑣𝑤𝑖𝑝𝐿𝑖𝑝𝑚
mp𝑖mp𝑖

 

Equation (3) elucidates the costs related to drying, encompassing both field and warehouse 

drying operations.  

(3) 

DRC =∑fcdrs̃ 𝑑𝑟𝑠𝑖
𝑖

+ fcdrws̃ .(∑𝑑𝑟𝑤𝑠1𝑗1
j1

+∑𝑑𝑟𝑤𝑠1𝑗2
j2

)  

+𝑐𝑣𝑤𝑠. (∑∑∑∑𝑑𝑖𝑛𝑣1𝑗1𝑝𝑚𝑚′
𝑚′m𝑝j1

+∑∑∑∑𝑑𝑖𝑛𝑣2𝑗2𝑝𝑚𝑚′
𝑚′m𝑝j2

) 

The warehousing costs, including those associated with constructed or rented facilities, are 

addressed in Equation (4). 

(4) INC =∑fcws1 ̃ Yws1j1
j1

+∑fcws2̃ Yws2j2
j2

) 

Fixed costs associated with establishing pre-processing centers, biogas facilities, and wages for 

product preparation are presented in Equations (5) and (6).  

(5) 
PCC =∑∑fcwckk′̃  Ywckk′

k′k

+∑∑𝑐𝑣𝑤𝑐 𝑀𝑘𝑚

mk

 

(6) TC =∑fcBG𝑟̃𝑌𝐵𝐺𝑟
r

+∑𝑐𝑣𝐵𝐺𝑁𝑟
r

 

Equation(7) calculates the costs of water treatment, including transportation to various facilities, 

as well as the expenses involved in separating and transporting fertilizer to the fields. 

(7) 

WTC =∑∑𝐶𝑇𝐽ℎ𝑖𝑇𝐽ℎ𝑖
𝑖

 +∑∑𝐶𝑇𝐴ℎ𝑘𝑇𝐴ℎ𝑘
𝑘

 
ℎℎ

+∑∑𝐶𝑇𝐵ℎ𝑟𝑇𝐵ℎ𝑟
𝑟

 
ℎ

 

+∑∑𝐶𝑇𝐹ℎ𝑖𝑇𝐹ℎ𝑖
𝑖

 
ℎ

+∑∑𝐶𝑅𝐹ℎ𝑖𝑇𝐹ℎ𝑖
𝑖

 
ℎ

+∑∑𝐶𝑅𝑊𝑎ℎ𝑆𝑊𝑎ℎ

ℎ

 
𝑎

 

+∑∑𝐹𝐶𝑃𝐽ℎ𝑖𝑊𝐽ℎ𝑖
𝑖

 +∑∑𝐹𝐶𝑃𝐴ℎ𝑘𝑊𝐴ℎ𝑘
𝑘

 
ℎℎ

 

+∑∑𝐹𝐶𝑃𝐵ℎ𝑟𝑊𝐵ℎ𝑟
𝑟

 
ℎ
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Equation (8) details the total fixed and variable transportation costs and vehicle expenses 

across all categories within the network. 

(8) 

BFC =∑∑∑∑∑dws1ij1pA1ct Xws1ij1pmA1/f
pt

A1𝑚pj1i

 

+∑∑∑∑∑dws2ij2pA1ct Xws2ij2pmA1/f
pt

𝐴1mpj2i

 

+∑∑∑∑∑dwc1j1kpA2ct Xwc1j1kpmA2/f
pt

𝐴2mpkj1

 

+∑∑∑∑∑dwc1j2kpA2ct Xwc2j2kpmA2/f
pt

𝐴2mpkj2

 

+∑∑∑dBGkrA3  ct  XBGkrA3/f
tt

A3rk

 

+fctru1̃(∑∑∑∑∑∑(𝑡𝑟𝑢𝑠𝑤1𝑖𝑗1𝐴1 + 𝑡𝑟𝑢𝑠𝑤2𝑖𝑗2𝐴1
𝐴2𝐴1𝑘j2j1i

 

+𝑡𝑟𝑢𝑤𝑐1𝑗1𝑘𝐴2 + 𝑡𝑟𝑢𝑤𝑐2𝑗2𝑘𝐴2)) 

+fctru2̃(∑∑∑∑∑𝑡𝑟𝑢𝐵𝐺𝑘𝑟𝐴3
𝐴4

+ 𝑡𝑟𝑢𝐵𝐺𝑟𝑑𝐴4)
𝐴3𝑑𝑟𝑘

 

Social Objective Function 

The second objective function aims to assess the social impacts of the biofuel supply chain network 

by quantifying the total unmet electricity demand in various demand areas, as represented in 

Equation 9. 

(9) Min Z2 = M∑Udd
𝑑

 

Environmental Objective Function 

The environmental objective function is designed to measure and minimize carbon dioxide (CO2) 

emissions associated with facility construction (denoted as EMCF) and transportation activities 

(denoted as EMWT) throughout different segments of the proposed network. 

(10) 𝑀𝑖𝑛 𝑍2 =EMCF+EMWT 

Equation 11 accounts for carbon emissions related to the construction of warehouses, pre-

processing centers, biogas facilities, and water exploitation facilities. In contrast, Equation 12 

outlines the carbon emissions from transportation activities across the supply chain. 

(11) 

𝐸𝑀𝐶𝐹 = 𝐸𝑊𝑆 . (∑𝑐𝑎𝑝𝑤𝑠1𝑗1Yws1j1
j1

 

𝐸𝐵𝐺1 . (∑ 𝑐𝑎𝑝𝐵𝐺𝑟 𝑌𝐵𝐺𝑟)
r

 +  ∑𝐸𝐵𝐺2 𝑁𝑟
r
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+∑∑𝐸𝐽𝑃ℎ𝑖
𝑖

𝑊𝐽ℎ𝑖
ℎ

 +∑∑𝐸𝐴𝑃ℎ𝑘
𝑘

𝑊𝐴ℎ𝑘
ℎ

  

+∑∑𝐸𝐵𝑃ℎ𝑟
𝑟

𝑊𝐵ℎ𝑟
ℎ

 +∑∑𝐸𝑇𝐹ℎ𝑖
𝑖

𝑇𝐹ℎ𝑖
ℎ

 

+∑∑𝐸𝑆𝑊𝑎ℎ

ℎ

𝑆𝑊𝑎ℎ

𝑎

 

 

(12) 𝐸𝑀𝑊𝑇 =∑∑∑∑∑𝑑𝑤𝑠1𝑖𝑗1𝑝𝐴1  𝑒𝑝𝑡 𝑊𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1
𝐴1𝑚𝑝𝑗1𝑖

+∑∑∑∑∑𝑑𝑤𝑠2𝑖𝑗2𝑝𝐴1  𝑒𝑝𝑡 𝑊𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1
𝐴1𝑚𝑝𝑗2𝑖

 

+∑∑∑∑∑𝑑𝑤𝑐1𝑗1𝑘𝑝𝐴2  𝑒𝑝𝑡 𝑊𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2
𝐴2𝑚𝑝𝑘𝑗1

+∑∑∑∑∑𝑑𝑤𝑐2𝑗2𝑘𝑝𝐴2  𝑒𝑝𝑡 𝑊𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2
𝐴2𝑚𝑝𝑘𝑗2

 

+∑∑∑𝑑𝐵𝐺𝑘𝑟𝐴3  𝑒𝑡𝑡 𝑊𝐵𝐺𝑘𝑟𝐴3
𝐴3𝑟𝑘

 

Objective Function for Calculating Warehouse Risk 

The fourth objective function, represented by equation (13), aims to minimize warehouse risk. This 

function incorporates several risk indicators, including the storage conditions of inventories within 

the warehouse, potential product losses, delays in product delivery, safety issues related to theft, 

fire hazards, proper ventilation, and other relevant factors. The weighting coefficients (α, β, γ, δ, 

θ) are used to quantify the relative importance of each variable in the overall assessment of 

warehouse risk, as determined by specialists and experts in the field. 

(13) 

𝑀𝑖𝑛 𝑍4 = 𝛼. 𝛿𝑆(∑Yws1j1
j1

+∑Yws2j2
j2

) 

+𝛽.𝑤𝑟(∑Yws1j1
j1

+∑Yws2j2
j2

) +  𝛾. 𝐼𝑛𝑠(∑Yws1j1
j1

+∑Yws2j2
j2

) 

+ 𝛿. 𝐷𝑡(∑Yws1j1
j1

+∑Yws2j2
j2

) +  𝜃. (1 − 𝑆𝐼)(∑Yws1j1
j1

 

+∑Yws2j2
j2

) 

Constraints 

The model incorporates several types of constraints, including capacity constraints, inventory 

constraints, technical constraints, and equilibrium constraints, which are defined as follows: 

(14) ∑𝐿𝑖𝑝𝑚
𝑚

≤ 𝑆𝑖𝑝                   ∀ 𝑖, 𝑝    

(15) ∑𝐿𝑖𝑝𝑚
𝑚

≤ (𝑊𝐵𝑊𝑖  + 𝐹𝐹𝑖  )𝜑 + 𝑀𝑊𝑀   ∀ 𝑖, 𝑝    
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(16) ∑𝑑𝑟𝑠𝑖
𝑖

≥ (∑∑𝐿𝑖𝑝𝑚
𝑚𝑝

 )/𝑀                  ∀ 𝑖    

Constraints (14) and (15) ensure that the amount of biomass purchased from each farm does 

not exceed the available biomass supply and the respective quantities of trees and wood stock on 

each farm. Constraint (16) stipulates that a drying device must be installed on the farm to reduce 

the initial moisture content of the biomass. 

(17) ∑∑𝑋𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1
𝐴1

+∑∑𝑋𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1
𝐴1𝑗2

= 𝐿𝑖𝑝𝑚
𝑗1

    ∀ 𝑖, 𝑝,𝑚 

(18) ∑∑∑∑𝑋𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1
𝐴1𝑚𝑝𝑖

≤ 𝑐𝑎𝑝𝑤𝑠1𝑗1𝑌𝑤𝑠1𝑗1       ∀ 𝑗1 

(19) ∑∑∑∑𝑋𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1
𝐴1𝑚𝑝𝑖

≤ 𝑐𝑎𝑝𝑤𝑠2𝑗2𝑌𝑤𝑠2𝑗2       ∀ 𝑗2 

Constraint (17) defines the biomass transported from the farm to the storage facilities. 

Furthermore, constraints (18) and (19) ensure that the flow of transported biomass from the farm 

does not exceed the storage capacity limits. 

(20) 𝑑𝑟𝑤𝑠1𝑗1 = 𝑌𝑤𝑠1𝑗1    ∀ 𝑗1 

(21) 𝑑𝑟𝑤𝑠1𝑗2 = 𝑌𝑤𝑠1𝑗2    ∀ 𝑗2 

(22) 𝑖𝑛𝑣1𝑗1𝑝𝑚 =∑∑𝑋𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1
𝐴1𝑖

   ∀ 𝑗1, 𝑝,𝑚 

(23) 𝑖𝑛𝑣2𝑗2𝑝𝑚 =∑∑𝑋𝑤𝑠1𝑖𝑗2𝑝𝑚𝐴1
𝐴1𝑖

   ∀ 𝑗2, 𝑝,𝑚 

(24) 𝑖𝑛𝑣1𝑗1𝑝𝑚 = ∑ 𝑑𝑖𝑛𝑣1𝑗1𝑝𝑚𝑚′
𝑚′<𝑚

          ∀ 𝑗1, 𝑝,𝑚 

(25) 𝑖𝑛𝑣2𝑗2𝑝𝑚 = ∑ 𝑑𝑖𝑛𝑣2𝑗2𝑝𝑚𝑚′
𝑚′<𝑚

          ∀ 𝑗2, 𝑝,𝑚 

Constraints (20) and (21) stipulate the installation of dryers in each warehouse. Constraints 

(22) and (23) define the biomass inventory levels within the warehouses, while constraints (24) 

and (25) pertain to the inventory after the secondary moisture reduction of the biomass at the 

warehouse site. 

(26) (1 − 𝑑𝑟𝑤𝑠1𝑗1)𝑖𝑛𝑣1𝑗1𝑝𝑚 = 𝑑𝑖𝑛𝑣1𝑗1𝑝𝑚𝑚′   ∀ 𝑗1, 𝑝,𝑚,𝑚′ = 𝑚 

(27) (1 − 𝑑𝑟𝑤𝑠2𝑗2)𝑖𝑛𝑣2𝑗2𝑝𝑚 = 𝑑𝑖𝑛𝑣2𝑗2𝑝𝑚𝑚′   ∀ 𝑗2, 𝑝,𝑚, 𝑚′ = 𝑚 

The above constraints indicate that, in the absence of a drying device installed in warehouses, 

the inventory will retain its initial moisture content. 

(28) ∑∑∑𝑋𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1
𝐴1𝑚𝑖

≥∑∑∑𝑋𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2
𝐴2

     ∀ 𝑗1 , 𝑝 

𝑚𝑘
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(29) ∑∑∑𝑋𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1
𝐴1𝑚𝑖

≥∑∑∑𝑋𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2
𝐴2

    ∀ 𝑗2 , 𝑝 

𝑚𝑘

 

(30) 
∑∑∑∑𝑋𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2

𝐴2𝑚𝑝𝑗1

 

+∑∑∑∑𝑋𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2
𝐴2

≤∑𝑐𝑎𝑝𝑤𝑐𝑘𝑘′
𝑘′

𝑌𝑤𝑐𝑘𝑘′         ∀ 𝑘      

𝑚𝑝𝑗2

 

Constraint (28) and (29) constitute the model's first equilibrium equation, reflecting the 

balance of biomass transported from the warehouse to the processing center. Additionally, 

equation (30) specifies that the total biomass transported must not exceed the capacity of the pre-

processing centers. 

(31) ∑𝑌𝑤𝑐𝑘𝑘′
𝑘′

≤ 1   ∀ 𝑘 

(32) 𝑀𝑘 =∑∑∑∑𝑋𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2
𝐴2𝑚𝑝𝑗1

   +∑∑∑∑𝑋𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2
𝐴2

      

𝑚𝑝𝑗2

∀ 𝑘 

These two constraints elucidate the number of pre-processing centers required, their 

respective capacities and the volume of biomass processed. 

 

(33) 
∑∑∑∑𝑋𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2

𝐴2𝑚𝑝𝑗1

 

+∑∑∑∑𝑋𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2
𝐴2

≥∑∑𝑋𝐵𝐺𝑘𝑟𝐴3   

𝐴3𝑟

  ∀ 𝑘      

𝑚𝑝𝑗2

 

(34) ∑∑𝑋𝐵𝐺𝑘𝑟𝐴3  ≤  𝑐𝑎𝑝𝐵𝐺𝑟𝑌𝐵𝐺𝑟        ∀ 𝑟  

𝐴3𝑘

 

(35) 𝑁𝑟 =∑∑𝑋𝐵𝐺𝑘𝑟𝐴3    ∀ 𝑟 

𝐴3𝑘

 

Equation (33) is the second equilibrium equation, establishing a relationship between the total 

biomass processed and the biogas produced. Equation (34) delineates the capacity constraint of the 

facility, while constraint (35) quantifies the amount of biogas generated. 

(36) ∑∑𝑋𝐵𝐺𝑘𝑟𝐴3  ≥  ∑∑𝑋𝐷𝑟𝑑𝐴4
𝐴4𝑑

        ∀ 𝑟  
𝐴3𝑘

 

Equation (36) represents the third equilibrium equation that describes the relationship 

between the transport of produced biogas and the corresponding consumption demand.  

(37) 𝑌𝐵𝐺𝑟 = 𝑞
1𝑄𝑟

1 + 𝑞2𝑄r
2 + 𝑞3𝑄𝑟

3 + 𝑞4𝑄r
4 + 𝑞5𝑄𝑟t

5           ∀ 𝑟 

(38) 𝑌𝐵𝐺𝑟 ≤ 1    ∀ 𝑟 

(39) 𝐵𝑑 = 𝑐𝑟
𝑊−𝐵𝐺∑∑𝑋𝑑𝑟𝑑𝐴4

𝐴4𝑟

    ∀ 𝑑 

(40) 𝐸𝑑 = 𝑐𝑟
𝑚𝑘𝑐𝑟𝐵𝐺−𝐸𝐵𝑑                  ∀ 𝑑 
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Constraint (37) addresses only a single capacity, even though each biogas facility is designed 

with five distinct capacities. Constraint (38) facilitates the selection of a biogas facility based on 

the specified capacity requirements. Constraints (39) and (40) quantify the amounts of biogas 

and electricity produced, respectively. 

(41) 𝐸𝑑 ≥ 𝑑
𝑚𝑖𝑛𝑑𝑑     ∀ 𝑑 

(42) 𝑈𝑑𝑑 = 𝑑𝑑 − 𝐸𝑑       ∀ 𝑑 

(43) 𝑀(𝑊𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1) ≥ 𝑋𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1         ∀ 𝑖, 𝑗1, 𝑝, 𝑚, 𝐴1 

(44) 𝑀(𝑊𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1) ≥ 𝑋𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1              ∀ 𝑖, 𝑗2, 𝑝, 𝑚, 𝐴1 

(45) 𝑀(𝑊𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2) ≥ 𝑋𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2                 ∀ 𝑗1 , 𝑘, 𝑝,𝑚,𝐴2 

(46) 𝑀(𝑊𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2) ≥ 𝑋𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2           ∀ 𝑗2, 𝑘, 𝑝, 𝑚, 𝐴2 

(47) 𝑀(𝑊𝐵𝐺𝑘𝑟𝐴3) ≥ 𝑋𝐵𝐺𝑘𝑟𝐴3                        ∀ 𝑘, 𝑟, 𝐴3 

Constraint (41) indicates that the electricity generated exceeds consumption demand by a 

specified percentage. Constraint (42) quantifies the extent of unmet electricity demand. 

Additionally, Constraints (43) through (47) assess the reliability of the chosen routes for 

transporting products from farms to warehouses, pre-processing centers, and biogas facilities, 

considering these factors in an effort to mitigate environmental impacts.   

(48) ∑𝑆𝑊𝑎ℎ

ℎ

≤ 𝑀𝑆𝑊𝑎                ∀ 𝑎 

(49) ∑𝑆𝑊𝑎ℎ

ℎ

≤ 𝐶𝐴𝑃𝑇𝑅𝐸𝑇𝑎         ∀ 𝑎 

(50) 𝑇𝐽ℎ𝑖 ≤ 𝑃𝐼𝑃𝑀𝐽ℎ𝑖  𝑊𝐽ℎ𝑖               ∀ ℎ, 𝑖  

(51) 𝑇𝐴ℎ𝑘 ≤ 𝑃𝐼𝑃𝑀𝐴ℎ𝑘   𝑊𝐽ℎ𝑘        ∀ ℎ, 𝑘 

(52) 𝑇𝐵ℎ𝑟 ≤ 𝑃𝐼𝑃𝑀𝐵ℎ𝑟  𝑊𝐽ℎ𝑟         ∀ ℎ, 𝑟 

(53) ∑𝑆𝑊𝑎ℎ  𝛾2 =
𝑎

∑𝑇𝐹ℎ𝑖  
𝑖

        ∀ ℎ 

(54) ∑𝑆𝑊𝑎ℎ  𝛽2 =
𝑎

∑𝑇𝐽ℎ𝑖  
𝑖

+∑𝑇𝐴ℎ𝑘  
𝑘

+∑𝑇𝐵ℎ𝑟 
𝑟

    ∀ ℎ 

(55) ∑𝑇𝐹ℎ𝑖  ≥ 𝐹𝐹𝑖
ℎ

           ∀ 𝑖 

(56) ∑𝑇𝐽ℎ𝑖  ≥
ℎ

𝑊𝐵𝑊𝑖         ∀ 𝑖 

(57) ∑𝑇𝐴ℎ𝑘  ≥
ℎ

𝑊𝐵𝐶𝑘       ∀ 𝑘 

(58) ∑𝑇𝐵ℎ𝑟  ≥
ℎ

𝑊𝐵𝐺𝑟       ∀ 𝑟 

Constraints (48) to (58) are incorporated to facilitate effective water resource management. 

Specifically, constraints (48) and (49) stipulate that the flow of sludge and effluent must not 

exceed the wastewater treatment capacity and the maximum acceptable limits at the treatment 
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plant. Constraints (50) to (52) address the volume of treated water, ensuring that it remains within 

the capacity of the water transfer pipelines connecting the treatment plants to the farms, pre-

processing centers, and biogas plants. 

Furthermore, constraints (53) and (54) quantify the amount of fertilizer produced and the 

volume of treated water transported. Constraint (55) establishes that the volume of fertilizer 

generated must exceed the requirements of the farms, while constraints (56) to (58) ensure that 

the amount of treated water meets or exceeds the required capacities for the farms, pre-processing 

centers, and biogas facilities. 

 

(59) ∑∑𝑋𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1
𝑚

≤ 𝐶𝑎𝑝𝑡𝑟𝑢𝑤1 ∗ 𝑡𝑟𝑢𝑠𝑤1𝑖𝑗1𝐴1
𝑝

                ∀ 𝑖, 𝑗1, 𝐴1 

(60) ∑∑𝑋𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1
𝑚

≤ 𝐶𝑎𝑝𝑡𝑟𝑢𝑤1 ∗ 𝑡𝑟𝑢𝑠𝑤2𝑖𝑗2𝐴1
𝑝

                ∀ 𝑖, 𝑗2, 𝐴1 

(61) ∑∑𝑋𝑤𝑐1𝑗1𝑚𝑝𝐴2
𝑚𝑝

≤  𝐶𝑎𝑝𝑡𝑟𝑢𝑤1 ∗ 𝑡𝑟𝑢𝑤𝑐1𝑗1𝑘𝐴2                 ∀ 𝑗1, 𝑘, 𝐴2 

(62) ∑∑𝑋𝑤𝑐2𝑗2𝑚𝑝𝐴2
𝑚𝑝

≤  𝐶𝑎𝑝𝑡𝑟𝑢𝑤1 ∗ 𝑡𝑟𝑢𝑤𝑐2𝑗2𝑘𝐴2                 ∀ 𝑗2, 𝑘, 𝐴2 

(63) 𝑋𝐵𝐺𝑘𝑟𝐴3 ≤ 𝑐𝑎𝑝𝑡𝑟𝑢2 ∗ 𝑡𝑟𝑢𝐵𝐺𝑘𝑟𝐴3                                             ∀ 𝑘, 𝑟, 𝐴3 

(64) 𝑋𝐷𝑟𝑑𝐴4 ≤ 𝑐𝑎𝑝𝑡𝑟𝑢2 ∗ 𝑡𝑟𝑢𝑑𝑟𝑑𝐴4                                                   ∀ 𝑟, 𝑑, 𝐴4 

The constraints presented above delineate the vehicle requirements at various levels within 

the network. Specifically, constraints (59) and (62) define the capacity limits of trucks 

transporting products from the farms to the warehouses and subsequently from the warehouses 

to the pre-processing centers. Additionally, constraints (63) and (64) specify the trailer capacity 

constraints involved in transporting processed biomass to the biogas plant and, subsequently, 

from the biogas plant to the demand centers. 

(65) 
𝑑𝑟𝑠𝑖 , 𝑑𝑟𝑤𝑠1𝑗1, 𝑑𝑟𝑤𝑠2𝑗2, 𝑌𝑤𝑠1𝑗1,𝑌𝑤𝑠2𝑗2  , 𝑌𝑤𝑐𝑘𝑘′ ,𝑊𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1,𝑊𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1  ,𝑊𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2 , 

𝑊𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2  ,𝑊𝐵𝐺𝑘𝑟𝐴3  , 𝑄𝑟
1 , 𝑄𝑟

2 , 𝑄𝑟
3 , 𝑄𝑟

4 , 𝑄𝑟
5 ∈ {0,1} 

(66) 𝑌𝐵𝐺𝑟 , 𝑋𝑤𝑠1𝑖𝑗1𝑝𝑚𝐴1 , 𝑋𝑤𝑠2𝑖𝑗2𝑝𝑚𝐴1 , 𝑋𝑤𝑐1𝑗1𝑘𝑝𝑚𝐴2 , 𝑋𝑤𝑐2𝑗2𝑘𝑝𝑚𝐴2 , 𝑋𝐵𝐺𝑘𝑟𝐴3  ≥ 0 

(67) 𝑌𝐵𝐺𝑟 , 𝐿𝑖𝑝𝑚   , 𝑖𝑛𝑣1𝑗1𝑝𝑚  , 𝑖𝑛𝑣2𝑗1𝑝𝑚 , 𝑑𝑖𝑛𝑣1𝑗1𝑝𝑚𝑚′ , 

𝑑𝑖𝑛𝑣2𝑗2𝑝𝑚𝑚′,  , ,𝑀𝑘 , 𝑁𝑟 , 𝐵𝑑  , 𝐸𝑑 , 𝑈𝑑𝑑 , 𝑆𝑊𝑎ℎ , 𝑇𝐽ℎ𝑖  , 𝑇𝐴ℎ𝑘  , 𝑇𝐵ℎ𝑟  , 𝑇𝐹ℎ𝑖 ≥ 0 

Mathematical Modeling 

It is noteworthy that the proposed model includes four objective functions (minimization of total 

costs, reduction of environmental impacts, improvement of social indicators, and reduction of 

warehouse risk). The model also comprises a total of 64 constraints. In addition, there are 49 

decision variables in total, including 22 continuous variables related to material flows and 
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allocations, 25 binary variables associated with facility selection, routing, and capacity, and 2 

stochastic variables corresponding to uncertainty in supply and demand. 

To strengthen the theoretical foundation and enhance comparability, the proposed objective 

functions and constraints are aligned with and supported by recent studies. More specifically, the 

economic objective (cost minimization) is consistent with recent research on fuzzy multi-objective 

resilient supply chain models (Nozari et al., 2025). The environmental dimensions are supported 

by recent studies on sustainable supply chain design (Flores-Siguenza, 2025). The social indicators 

are validated by up-to-date studies in the field of sustainable agricultural supply chains (Rahbari et 

al., 2023). Finally, warehouse risk is reinforced and substantiated by recent findings on multi-level 

food supply chain optimization (Kiani Mavi, 2025). 

Linearization of the Model 

Equations (26) and (27) exhibit nonlinearity due to the interaction between a binary variable and a 

continuous variable. To transform these equations into linear form, we introduced the following 

auxiliary variables, along with accompanying constraints to ensure that these auxiliary variables 

are restricted to integer values. 

Variable change Nonlinear constraint 

𝑖𝑛𝑣1𝑗1𝑝𝑚 = 𝑢𝑗1𝑝𝑚𝑚′ (1 − 𝑑𝑟𝑤𝑠1𝑗1)𝑖𝑛𝑣1𝑗1𝑝𝑚 = 𝑑𝑖𝑛𝑣1𝑗1𝑝𝑚𝑚′   ∀ 𝑗1, 𝑝, 𝑚,𝑚′ = 𝑚 

Constraints added to the model: 

(68) 𝑢𝑗1𝑝𝑚𝑚′ ≥  𝑑𝑖𝑛𝑣1𝑗1𝑝𝑚𝑚′ −𝑀(1 − 𝑑𝑟𝑤𝑠1𝑗1) 

(69) 𝑢𝑗1𝑝𝑚𝑚′ ≤  𝑀 𝑑𝑟𝑤𝑠1𝑗1 

Variable change Nonlinear constraint 

𝑖𝑛𝑣2𝑗2𝑝𝑚 = 𝑢′𝑗2𝑝𝑚𝑚′ (1 − 𝑑𝑟𝑤𝑠2𝑗2)𝑖𝑛𝑣2𝑗2𝑝𝑚 = 𝑑𝑖𝑛𝑣2𝑗2𝑝𝑚𝑚′   ∀ 𝑗2, 𝑝,𝑚,𝑚′ = 𝑚 

Constraints added to the model: 

(70) 𝑢′𝑗2𝑝𝑚𝑚′ ≥  𝑑𝑖𝑛𝑣2𝑗2𝑝𝑚𝑚′ −𝑀(1 − 𝑑𝑟𝑤𝑠2𝑗2) 

(71) 𝑢′𝑗2𝑝𝑚𝑚′ ≤  𝑀 𝑑𝑟𝑤𝑠2𝑗2 

Model Adjustment Utilizing Fuzzy Relations 

Fuzzy logic has been employed to model the uncertainty associated with costs. In real-world 

scenarios, data is often characterized by inaccuracies and instabilities; consequently, these 

variables have been incorporated into the model as fuzzy numbers to enhance the realism of the 

analyses. Specifically, startup costs and supply and demand values have been represented as fuzzy 

numbers. To effectively manage these fuzzy parameters, the methodology proposed by Jimenez et 

al. (2007) is utilized. This approach is designed to transform the fuzzy mixed-integer linear 

optimization model (FMILP) into an equivalent deterministic model. In this framework, if the 

fuzzy numbers are defined as triangular (as depicted in Figure 3), and (𝑐̃ = {𝐿,𝑀, 𝑈} ) denotes a 

fuzzy number, then equation (72) can be articulated as follows: 
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(72) 

{
 
 

 
 𝑓𝑐(𝑥) =

𝑥 − 𝐿

𝑀 − 𝐿
 

1                   

𝑔𝑐(𝑥) =
𝑈 − 𝑥

𝑈 −𝑀
0                   

      

𝑖𝑓    𝐿 ≤ 𝑥 ≤ 𝑀          
𝑖𝑓    𝑥 = 𝑀                   
𝑖𝑓    𝐿 ≤ 𝑥 ≤ 𝑀           
 𝑖𝑓    𝑥 ≤ 𝑀   𝑜𝑟   𝑥 ≥ 𝑈

 

 
Figure 3. Membership functions of a 

triangular fuzzy number 

The equations have been formulated to effectively manage fuzzy parameters, allowing for the 

determination of Pareto frontiers for various objectives. Following the framework proposed by 

Jimenez (1996), we can interpret relations (73) and (74) such that the interval (EI) and the expected 

value (EV) are equivalent to ( 𝐶̃ ). 

(73) 𝐸𝐼(𝐶)̃ = [𝐸1
𝐶 , 𝐸2

𝐶] = [∫ 𝑓𝑐
−1(𝑥)𝑑𝑥,∫ 𝑔𝑐

−1(𝑥)𝑑𝑥
1

0

1

0

] = [
𝐿 +𝑀

2
,
𝑀 +𝑈

2
] 

(74) 𝐸𝑉(𝐶)̃ =
𝐸1
𝑐 − 𝐸2

𝑐

2
=
𝐿 + 2𝑀+ 𝑈

4
 

Utilizing the fuzzy number ranking method established by Jimenez et al. (2007), we can 

examine relation (75) within the context of a binary set of fuzzy numbers, specifically 𝑎̃ and  𝑏̃, 

where the level of  𝑏̃ is less than that of 𝑎̃. 

(75) 

𝑖𝑓    𝐸1
𝑎 −𝐸2

𝑏 > 0 
 

 

 
 

𝑖𝑓    0 ∈ [𝐸1
𝑎 − 𝐸2

𝑏 , 𝐸2
𝑎 − 𝐸1

𝑏] 
 

 
 

 

𝑖𝑓    𝐸1
𝑎 −𝐸2

𝑏 < 0 
𝜇𝑀(𝑎̃, 𝑏̃) =

{
 
 

 
 

 
1                          
 𝐸2
𝑎 − 𝐸1

𝑏

𝐸2
𝑎 −𝐸1

𝑏 − (𝐸1
𝑎 −𝐸2

𝑏)
0                       

 

When 𝜇𝑀(𝑎̃, 𝑏̃) ≤ 𝛼, it indicates that  𝑎̃ is less than or equal to  𝑏̃ and the fuzzy constraints in 

the research model are transformed into the form of equation (76) 

(76) 𝑎̃𝑥 ≤  𝑏̃, 𝑥 ≥ 0 

According to the above fuzzy relations, relations (2) to (6) in the first objective function will 

change to relations (77) to (82) 

(77) 
𝐵𝑃𝐶 =∑∑∑

𝐿𝑐𝑣 + 2𝑀𝑐𝑣 + 𝑈𝑐𝑣

4
(𝐿𝑖𝑝𝑚) +∑∑∑𝑐𝑣𝑤𝑖𝑝𝐿𝑖𝑝𝑚

mp𝑖mp𝑖

 

(78) 

DRC =∑
𝐿𝑓𝑐𝑑𝑟𝑠 + 2𝑀𝑓𝑐𝑑𝑟𝑠 + 𝑈𝑓𝑐𝑑𝑟𝑠

4
 𝑑𝑟𝑠𝑖

𝑖

 

+
𝐿𝑓𝑐𝑑𝑟𝑤𝑠 + 2𝑀𝑓𝑐𝑑𝑟𝑤𝑠 + 𝑈𝑓𝑐𝑑𝑟𝑤𝑠

4
. (∑𝑑𝑟𝑤𝑠1𝑗1

j1

 +∑𝑑𝑟𝑤𝑠1𝑗2
j2

) 

+𝑐𝑣𝑤𝑠. (∑∑∑∑𝑑𝑖𝑛𝑣1𝑗1𝑝𝑚𝑚′
𝑚′m𝑝j1

+∑∑∑∑𝑑𝑖𝑛𝑣2𝑗2𝑝𝑚𝑚′
𝑚′m𝑝j2

) 
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(79) 

INC = (∑
𝐿𝑓𝑐𝑤𝑠1 + 2𝑀𝑓𝑐𝑤𝑠1 + 𝑈𝑓𝑐𝑤𝑠1

4
Yws1j1

j1

 

+∑
𝐿𝑓𝑐𝑤𝑠2 + 2𝑀𝑓𝑐𝑤𝑠2 + 𝑈𝑓𝑐𝑤𝑠2

4
Yws2j2

j2

) 

(80) 

PCC =∑∑
𝐿𝑓𝑐𝑤𝑐𝑘𝑘′ + 2𝑀𝑓𝑐𝑤𝑐𝑘𝑘′ + 𝑈𝑓𝑐𝑤𝑐𝑘𝑘′

4
Ywckk′

k′k

 

+∑∑𝑐𝑣𝑤𝑐 𝑀𝑘𝑚

mk

 

(81) 
TC =∑

𝐿𝑓𝑐𝐵𝐺𝑟 + 2𝑀𝑓𝑐𝐵𝐺𝑟 + 𝑈𝑓𝑐𝐵𝐺𝑟
4

(𝑌𝐵𝐺𝑟)
r

+∑𝑐𝑣𝐵𝐺𝑁𝑟
r

 

(82) 

BFC =∑∑∑∑∑dws1ij1pA1ct Xws1ij1pmA1/f
pt

A1𝑚pj1i

 

+∑∑∑∑∑dws2ij2pA1ct Xws2ij2pmA1/f
pt

𝐴1mpj2i

 

+∑∑∑∑∑dwc1j1kpA2ct Xwc1j1kpmA2/f
pt

𝐴2mpkj1

 

+∑∑∑∑∑dwc1j2kpA2ct Xwc2j2kpmA2/f
pt

𝐴2mpkj2

 

+∑∑∑dBGkrA3 ct XBGkrA3/f
tt

A3rk

 

+
𝐿fc𝑡𝑟𝑢1+ 2𝑀fc𝑡𝑟𝑢1 + 𝑈fc𝑡𝑟𝑢1

4
(∑∑∑∑∑∑(𝑡𝑟𝑢𝑠𝑤1𝑖𝑗1𝐴1

𝐴2𝐴1𝑘j2j1i

 

+𝑡𝑟𝑢𝑠𝑤2𝑖𝑗2𝐴1+ 𝑡𝑟𝑢𝑤𝑐1𝑗1𝑘𝐴2+ 𝑡𝑟𝑢𝑤𝑐2𝑗2𝑘𝐴2)) 
 

+
𝐿fc𝑡𝑟𝑢2+ 2𝑀fc𝑡𝑟𝑢2 + 𝑈fc𝑡𝑟𝑢2

4
(∑∑∑∑∑𝑡𝑟𝑢𝐵𝐺𝑘𝑟𝐴3

𝐴4

+ 𝑡𝑟𝑢𝑑𝑟𝑑𝐴4
𝐴3

)

𝑑𝑟𝑘

 

Given the multi-objective nature of the model, the epsilon constraint method has been 

employed for its resolution. In this approach, at each stage, one objective function is designated as 

the primary objective, while the remaining functions are treated as constraints with specified 

epsilon values to facilitate balance and optimization (Mavrotas, 2009). Equation (83) illustrates the 

epsilon constraint method. 

(83) 

𝑚𝑖𝑛 𝑓1(𝑥) 
subject to 

𝑓1(𝑥) ≤ 𝜀2 

𝑓1(𝑥) ≤ 𝜀3 

… 

𝑓𝑝(𝑥) ≤ 𝜀𝑝 

𝑥 ∈ 𝑆 
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Results 

The model implementation results include an analysis of its performance in achieving various 

objectives, such as cost reduction, improvement of environmental efficiency, mitigation of social 

impact, and reduction of inventory risk. Additionally, a sensitivity assessment of the model was 

performed, considering key parameters such as stochastic supply and demand, fuzzy cost estimates, 

and fluctuations in raw material prices. 

Initial values for these parameters were derived from data and findings from prior research 

conducted by Ransikarbum and Pitakaso (2024). Relevant assumptions are summarized in Table 

2. 

Table 2. Assumptions and values of some model parameters 

Parameters Assumptions, values, and explanations 

𝑆𝑖𝑝 
Five farms are assumed to harvest woody biomass and Paulownia trees. In the first period, it is 

assumed that approximately 30 tons of biomass can be harvested from each farm. 

𝑑𝑑 
Five demand centers are considered for the electricity produced, with an initial demand of 

approximately 40 MW in the first period. 

𝑌𝑤𝑠1𝑗1 It is assumed that three buildable warehouses have capacities of 15 tons. 

𝑌𝑤𝑠2𝑗2 It is assumed that there are five rental warehouses with capacities of 10 tons. 

𝑌𝑤𝑐𝑘𝑘′ 
It is assumed that there are five pre-processing centers, each with three different capacity levels 

of 40, 60, and 80 tons. 

𝑌𝐵𝐺𝑟 It is assumed that five biogas facilities have capacities of 5, 6, 7, 8, and 9 megawatts. 

fcws1̃ The fixed cost of establishing each buildable warehouse is approximately 300,000 dollars. 

fcws2̃ The fixed cost for the one-year rental of each rental warehouse is approximately 11,000 dollars. 

fcwc𝑘𝑘′̃  
The fixed cost of establishing each pre-processing center, according to capacity, is 

approximately 400,000, 600,000, and 800,000 dollars, respectively. 

fcBG̃ 
The fixed cost of establishing each biogas facility, according to capacity, is approximately 

1,000,000; 1,100,000; 1,200,000; 1,400,000; and 1,500,000 dollars, respectively. 

𝑐𝑣̃ The cost of purchasing each ton of biomass is approximately 1,200 dollars. 

𝑐𝑣𝑤 The labor cost for collecting each ton of biomass is 130 dollars. 

𝑐𝑡 The fuel cost for transportation is 5 dollars. 

𝑓𝑝𝑡  The fuel consumption for the truck is 0.6 liters per kilometer. 

𝑓𝑡𝑡  The fuel consumption for transportation by tank trailer is 0.4 liters per kilometer. 

𝑒𝑝𝑡 The CO2 emission factor for transportation by truck is 0.0006 grams per kilometer. 

𝑒𝑡𝑡 The CO2 emission factor for transportation by tank trailer is 0.0023 grams per kilometer. 

In the proposed method, the model was implemented using GAMS software version 24.8, and 

Pareto points were obtained by optimizing each objective function individually. The resultant data 

is presented in Table 3. 

Table 3. Optimal values of objective functions 

Z4 Z3 Z2 Z1 

Reduction of total supply 
chain (thousand USD) 

Reduction of unmet 

demand 
(kWh) 

Reduction of carbon 

emissions 
(kg CO₂) 

Reduction of warehouse 

risk 
(%) 

2850.242 489600 40843 2.615 
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To establish a set of Pareto points, this set was generated by designating one objective function 

as the primary objective while treating the others as secondary objectives. This involved applying 

three different constraint levels for each objective, as detailed in Table 4. The primary aim was to 

identify optimal combinations of the objective functions, which were presented using the epsilon-

constraint method. Consequently, the Pareto frontier was delineated, allowing decision-makers to 

select the most appropriate option for multi-objective optimization while comprehending the 

associated trade-offs. Figure 4 illustrates the three-dimensional Pareto diagram, showing the 

frontier and Pareto values for each objective. 

Table 4. Pareto optimal combinations of points for objective functions 

Row Z1 Z2 Z3 Z4 Row Z1 Z2 Z3 Z4 

1 2850.242 1134000 40844.316 3.138 13 3320.682 919200 41058.504 3.661 

2 2850.242 1134000 40844.308 3.138 14 3396.552 1134000 40844.453 2.615 

3 2850.273 1134000 40844.28 3.138 15 3396.552 1134000 40844.59 2.615 

4 2850.275 1134000 40844.288 3.138 16 3426.444 811800 40844.603 3.661 

5 2850.284 1134000 40844.29 3.138 17 3426.49 811800 40844.651 3.661 

6 3213.688 1026600 40844.408 3.138 18 3426.563 811800 40844.552 3.661 

7 3213.688 1026600 40844.376 3.138 19 3577.243 919200 40844.491 3.138 

8 3213.688 1026600 40844.376 3.138 20 3577.252 919200 41058.504 3.138 

9 3213.688 1026600 40844.438 3.138 21 4095.483 704400 40844.426 3.661 

10 3213.763 1026600 40844.414 3.138 22 4095.51 704400 40844.52 3.661 

11 3320.682 919200 40844.411 3.661 23 4227.49 597000 40844.489 4.184 

12 3320.682 919200 40844.442 3.661 24 4330.729 489600 40844.751 4.184 

 

Figure 4. Three-dimensional Pareto frontier analysis for objective 

 function optimization 
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The illustrated three-dimensional Pareto diagram presents the optimal solutions derived from 

the biofuel supply chain model with four objectives. This model aims to minimize total supply 

chain costs (Z4), unmet demand (Z3), carbon emissions (Z2), and warehouse risk (Z1). The Pareto 

points represent trade-offs among these conflicting objectives, highlighting that improvements in 

one objective often come at the expense of others. The Pareto frontier delineates the set of efficient 

solutions, serving as a valuable decision-making tool in supply chain design. A specific point 

highlighted on the diagram, with a total cost of $2.85 × 10³, unmet demand of 4.896 × 10⁵ kWh, 

CO₂ emissions of 4.084 × 10⁴ kg, and inventory risk of 2.615%, exemplifies an optimal balance 

among these objectives. Analyzing this diagram enables decision-makers to simultaneously 

address sustainability and operational challenges within the supply chain. 

Considering the stochastic nature of supply and demand and fuzzy parameters for fixed costs, 

the model was developed and applied under five distinct scenarios, as detailed in Table 5. This 

table presents numerical values alongside triangular fuzzy membership functions representing 

fixed costs at minimum, mode, and maximum levels. The model evaluates the effects of supply 

and demand fluctuations on total costs, unmet demand, environmental impacts, and inventory risks. 

These analyses assist decision-makers in making optimal decisions regarding cost management 

and other critical factors under uncertainty. 

Table 5. Scenario Analysis of Supply, Demand, and Costs 

Scenario Supply Conditions (Si) 
Demand Conditions 

(dd) 
Fuzzy Cost Conditions 

First (Optimistic) Initial value Initial value Minimum value (L) 

Second (Likely) 15% decrease 15% decrease Most likely value (M) 

Third (Pessimistic) 20% decrease 
No change from initial 

value 
Maximum value (U) 

Fourth (High Risk) 25% decrease 25% increase Maximum value (U) 

Fifth (Minimum) 20% decrease 20% decrease Minimum value (L) 

Given that the proposed model is a scenario-based multi-objective model, its optimality was 

first evaluated. In the optimization process of each objective, the optimized objective function 

values are expected to attain the most desirable state relative to the other objectives. Table 4 reports 

the optimal values of the economic objective function. As this objective seeks to minimize the total 

system cost, the value of Z1, in this case, achieves the lowest level compared to when the second 

through fourth objectives are optimized. Similarly, when the environmental objective is optimized, 

the values of Z3 are expected to reach their minimum. This property holds for all four optimized 

objectives. Tables 6 through 9 present the various objective function values under different 

scenarios, while Figure 5 illustrates the corresponding graphs of the optimized objectives in these 

scenarios. 
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Table 6. Economic objective function performance (Z1) 

S Z1 Z2 Z3 Z4 

1 3168.89 984000 41061.504 2.615 

2 2850.284 1134000 40884.29 3.138 

3 4104.506 1134000 40884.29 3.138 

4 4926.812 1284000 40844.376 3.138 

5 2850.284 1134000 40884.29 3.138 

Table 7.Social Objective Function Performance (Z2) 

S Z1 Z2 Z3 Z4 

1 5570.979 189600 41058.504 4.184 

2 4330.729 489600 17085.233 4.184 

3 6697.895 489600 41062.504 4.184 

4 6672.895 78960 41060.504 4.184 

5 4330.729 489600 41060.504 4.184 

Table 8.Performance of the environmental objective function (Z3) 

S Z1 Z2 Z3 Z4 

1 19948.405 938400 40843.584 3.138 

2 17085.233 1134000 40843.78 4.184 

3 22747.541 1134000 40843.78 4.184 

4 22770.457 1284000 40843.787 4.184 

5 17085.233 1134000 40843.78 4.184 

Table 9.Risk objective function performance (Z4) 

S Z1 Z2 Z3 Z4 

1 4095.977 984000 41060.504 2.092 

2 3396.552 1134000 41058.504 2.615 

3 5414.282 113400 41058.504 2.615 

4 4926.812 1284000 41060.504 3.138 

5 3396.552 1134000 41058.504 2.615 
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Figure 5. Execution of objective functions under different scenarios 

The graphs in Figure 5 demonstrate that different scenarios, including supply, demand, and 

cost fluctuations, influence the objective functions' performance. Notably, the second and fourth 

objective functions exhibit a greater relative stability in response to these variations. In contrast, 

the first and third objective functions demonstrate a heightened sensitivity to scenario changes. 

These findings underscore the importance of effectively managing uncertainties and optimizing 

resource allocation to enhance supply chain efficiency and sustainability. Table 10 presents the 

results derived from solving the model across five distinct scenarios. The costs and the number of 

facilities utilized have increased and decreased according to the corresponding changes in supply 

and demand. 

Table 10. Results of model variables in five different scenarios 

Details 
Scenario 

One 

Second 

scenario 

Third 

scenario 

Fourth 

scenario 

Scenario 

Five 

Cost of purchasing biomass 73.48 100.555 158.287 179.225 54.041 

Cost of establishing warehouses 355.063 355.063 402.89 395.45 384.01 

Cost of establishing drying plants 200.05 230.015 340.5 340.5 170 

Cost of water purification 43.63 43.63 48.09 48.09 43.63 

Cost of transporting water 365.048 365.048 402 438.23 365.048 

Cost of establishing pre-processing centers 602.726 652.365 1002.726 1003.087 502.005 

Cost of establishing biogas facilities 606.798 631.61 808.662 915.627 446.226 

Cost of renting vehicles 210.925 196.945 210.937 219.857 183.127 

Amount of biomass purchased 60.576 60.564 60.576 68.59 44.552 

Amount of demand 378 328 378 428 278 

Unmet demand 189 164 189 214 139 

Environmental impact (measured as CO₂ 

emissions) 
41056.504 41061.13 41059.504 41057.504 41058.504 

Number of biomass collection farms 2 2 2 3 2 

Number of active storages constructed 1 1 1 2 - 

Number of active rented storage units 4 4 5 4 5 

Number of active pre-

processing centers 

Capacity 40 
Ton 

-- -- -- -- -- 

Capacity 60 

Ton 
1 1 1 -- 1 

Capacity 90 

Ton 
-- -- 1 1 -- 

Number of active biogas facilities 1 1 1 1 1 
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As illustrated in Table 10, variations in demand and cost fluctuations significantly influence 

the number of facilities utilized within the model. In the first through third scenarios, which account 

for diverse supply and demand conditions and incorporate fuzzy cost assessments, facilities are 

established in proportion to these variations. In the fourth scenario, characterized by the highest 

demand, products are harvested from three farms, resulting in the establishment of a pre-processing 

center with a capacity of 90 tons per day, as well as the construction of two warehouses and the 

rental of four additional warehouses. 

Conversely, no storage facilities are constructed in the fifth scenario, which reflects the lowest 

supply and demand figures alongside the least fuzzy costs. Moreover, the costs associated with 

water treatment and transportation fluctuate based on usage across all scenarios. Figure 6 presents 

the graphs illustrating changes in facility costs across the different scenarios. As expected, 

fluctuations in supply and demand in these scenarios lead to corresponding increases or decreases 

in the costs associated with the established facilities. Notably, the costs of pre-treatment centers 

and biogas facilities represent a significant portion of the overall expenditures. 

  

Figure 6. Comparing cost trends in different scenarios 

Figure 7 comprehensively analyzes various supply chain indicators across different time 

periods. Scenarios three and four incur the highest costs compared to the other scenarios, primarily 

attributable to increased demand and the selection of fuzzy maximum costs. In contrast, scenario 

five, characterized by the lowest supply, demand, and cost, exhibits the most favorable cost 

outcome. Similar patterns are observed in water consumption costs, where scenario five reflects 

the lowest costs while scenario four incurs the highest. Overall, costs remain moderate and exhibit 

greater stability in scenario one. The fluctuations in inventory risk throughout the scenarios reveal 

a significant increase in risk for specific scenarios and stages. This escalation may be attributed to 

supply-demand asymmetry, unpredictable resource supply fluctuations, or transportation 

constraints. 

The number of facilities utilized in the model varies according to each scenario. In the second 

and third scenarios, there is a significant increase in established facilities, which may indicate a 
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need for further expansion of supply and distribution infrastructure to meet rising demands. In 

contrast, scenarios one and five, which exhibit a more gradual increase in facilities, represent more 

optimal strategies for resource allocation and infrastructure utilization, ultimately aimed at 

reducing costs and enhancing efficiency. Notably, the highest level of unmet demand occurred in 

scenario four, characterized by the model encountering the most significant demand coupled with 

the lowest supply. 

  

  

Figure 7. Comparison of key indicators of the research model in different scenarios 

Sensitivity Analysis: Sensitivity analysis is a fundamental tool for evaluating the stability and 

reliability of optimization models. It plays a crucial role in identifying and understanding the effects 

of variations in input parameters on outcomes (Ransikarbum & Pitakaso, 2024). This study's 

sensitivity analysis is concerned explicitly with variations in the costs of dryers and vehicles 

incorporated into the model and the minimum agreed-upon parameter for electricity generation. By 

reducing the moisture content of biomass, dryers not only mitigate fermentation and exothermic 

reactions that can result in heat generation and fire during storage but also lower transportation 

costs. This functionality enhances the safety of biomass storage and diminishes the fire risk. 

This study investigates the effects of 15% and 25% fluctuations in supply and demand and the 

application of fuzzy averages to fixed costs on cost variations. The findings indicate that increases 

in supply and demand are associated with significant rises in costs related to dryers and vehicles. 

Conversely, reductions in these parameters result in a decrease in costs. This pattern is also 

observed for other facility costs, highlighting their susceptibility to change. This analysis enhances 

our understanding of how sensitive costs are to fluctuations in supply and demand, which can 
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facilitate the optimization of economic and technical decisions in biofuel production processes. 

Figure 8 illustrates the observed changes in costs. 

  

Figure 8. Cost sensitivity analysis to changes in supply and demand 

In addition to the observed changes in costs, as illustrated in Figure 9, adjustments to the 

minimum agreed-upon electricity production for the community (d_min) parameter—specifically, 

a reduction of 15% or an increase of 25%—will result in proportional changes to the levels of 

unmet demand. In other words, fluctuations in this parameter directly influence the volume of 

unmet demand. This analysis underscores the significant impact that variations in the d_min 

parameter can have on unmet demand, highlighting the necessity of incorporating these changes 

into decision-making and planning processes. 

 

Figure 9. The impact of fluctuations in the minimum agreed electricity parameter on the amount of 

unmet electricity demand 

 

 



 

 
 

Industrial Management Journal, Volume 17, Issue 3, 2025 

 

 

152 

Discussion 

The growing global demand for energy and the problems caused by fossil fuels have further 

emphasized the necessity of utilizing renewable energy sources such as biomass. To ensure the 

sustainable supply of these resources, designing and optimizing the supply chain with innovative 

decisions regarding facility location and distribution is essential for guaranteeing network 

sustainability and efficiency (Awino et al., 2024). This study proposed a multi-objective 

optimization model under uncertainty with fuzzy parameters to design the biofuel supply chain. In 

this model, three objectives—total cost, unmet demand, and environmental impacts—were 

developed to address the key dimensions of the sustainability paradigm, along with one objective 

dedicated to reducing warehouse risk. Supply and demand parameters were modeled as stochastic 

variables. At the same time, facility fixed costs were represented as fuzzy variables to more 

accurately capture the uncertainties and ambiguities inherent in supply chain processes and support 

optimal decision-making. 

The multi-objective mathematical model was solved using the ε-constraint method. The results 

in Table 3 indicate that multiple points were generated along the Pareto frontier by varying the ε 

values for each objective, each representing the most optimal balance achievable among conflicting 

objectives. These results allow decision-makers to select optimal options based on existing 

priorities and constraints, enhancing the decision-making process. 

Scenario modeling was conducted under five different supply, demand, and fuzzy cost 

conditions, as shown in Table 4. Initially, the optimization results for each objective function were 

evaluated separately. Optimization of the economic objective resulted in reduced overall system 

costs and the minimum possible value for Z1. Similarly, Z3 values reached their lowest point in 

optimizing the environmental objective. These variations demonstrate that the model can 

effectively achieve the best outcomes for each objective while maintaining an optimal balance 

across different goals. 

The results of implementing various scenarios, discussed in the Findings section, reveal that 

supply, demand, and costs significantly impact supply chain performance. Scenarios with increased 

demand and costs naturally generated the highest expenses, whereas scenarios with minimal supply 

and demand minimized costs. This highlights the importance of optimizing resources and 

allocating infrastructure appropriately to reduce costs and improve efficiency. Furthermore, 

fluctuations in warehouse risk and the need for facility expansion in specific scenarios underscore 

the importance of effective risk management and infrastructure improvement in response to 

growing demand. Finally, the model demonstrated that a strategic balance must be maintained 

among supply, demand, and infrastructure to prevent unmet demand and preserve supply chain 

efficiency. 
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 Conclusion 

As noted in the introduction, wastewater as a water source offers a sustainable solution to reducing 

pressure on natural water resources. This research showed that this approach not only optimizes 

water resources but also reduces operational costs, improves system efficiency, and serves as an 

innovative initiative in resource management under water scarcity, thereby enhancing the 

performance of the supply chain. Based on the results of the sensitivity analysis, it is recommended 

that decision-makers incorporate changes in supply, demand, and cost parameters into planning 

processes. Effective demand management and adjusting electricity production strategies can reduce 

both costs and unmet demand. In the proposed model of this study, infrastructure facilities—

including warehouses, preprocessing centers, biogas plants, vehicles, and water pipeline 

transfers—were considered dynamically. Developing flexible infrastructure can reduce costs, 

mitigate risks, and improve performance under uncertainty, enabling managers and decision-

makers to manage better economic fluctuations and system efficiency in planning and resource 

allocation processes. 

This broad flexibility in the model allows managers to optimally allocate resources according 

to supply, demand, and costs fluctuations, and to refine strategic decisions with greater accuracy 

and efficiency. Therefore, it is recommended that this dynamic feature be utilized in planning and 

resource allocation processes to effectively reduce costs and maximize the performance of 

infrastructure systems when facing economic and environmental fluctuations. Moreover, 

establishing flexible infrastructure can reduce risks and improve performance under uncertain 

conditions. 

The present research, by developing a fuzzy multi-objective model, has focused on reducing 

costs and environmental impacts and considered warehouse risk management and water resource 

optimization. While previous studies have primarily emphasized cost reduction and greenhouse 

gas emission mitigation, such as Zhou et al. (2023), who concentrated solely on cost reduction, and 

Huang et al. (2024) and Mondal et al. (2023), who addressed uncertainty management using fuzzy 

approaches, this study contributes by integrating fuzzy facility fixed costs into a multi-objective 

model, offering a more realistic simulation of actual conditions, and improving the analysis of 

supply and demand impacts on supply chain performance. Through five-scenario modeling, the 

results demonstrated that supply and demand variations significantly affect costs and supply chain 

performance. This finding aligns with the study of Langholtz et al. (2024), who examined the 

effects of drought and climate change. However, this study emphasized the direct benefits of water 

resource management and wastewater utilization in reducing costs and enhancing sustainability. 

By applying the ε-constraint method and Pareto frontier analysis, the study provided an effective 

decision-making tool for optimal choices. Compared with Bahmani et al. (2024), the proposed 
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model—focused on dynamic infrastructure design and intelligent risk management—demonstrated 

greater flexibility in addressing uncertainty and environmental changes. 

This study further showed that scenario-based modeling of supply and demand conditions 

allows for a comprehensive analysis of their impacts on supply chain performance. Using 

wastewater and sewage sludge in the proposed model reduced pressure on natural resources and 

improved economic and environmental efficiency—a dimension less explored in studies such as 

Langholtz et al. (2024). The findings, supported by the ε-constraint method and Pareto frontier 

analysis, provided decision-makers with optimal options aligned with their priorities. Compared 

with studies such as Bahmani et al. (2024), the proposed model offered greater flexibility for 

addressing uncertainties by emphasizing dynamic infrastructure design and risk reduction. 

The limitations of this study include assumptions embedded in the model that may not fully 

reflect the complexities of real-world conditions, thereby failing to capture dynamic uncertainties 

comprehensively. Moreover, solving the model in GAMS required extended computational time 

due to the complexity of the problem, which limited the rapid analysis of scenarios. Without a 

comprehensive analysis of social dimensions, the primary focus on economic and environmental 

aspects is another limitation. 

For advancing future research, it is suggested that the model be evaluated across multiple time 

periods to assess its long-term impacts. Applying spatio-temporal models with GIS-based 

approaches in Iran can significantly enhance facility location optimization and distribution network 

design. Furthermore, examining social and cultural dimensions—particularly the impact of biofuel 

supply chains on local communities and the creation of employment opportunities in rural areas—

holds special importance. 
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