توسعه مدل D-optimal دومرحله‌ای به‌منظور انتخاب ترکیب اجزای سیستم‌های تولید انعطاف‌پذیر

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکدۀ مدیریت صنعتی، پردیس بین‌المللی کیش، دانشگاه تهران، کیش، ایران.

2 استاد، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشکدگان فنی، دانشگاه تهران، تهران، ایران.

3 دانشیار، گروه مدیریت، دانشکده مدیریت و علوم مالی، دانشگاه خاتم، تهران، ایران.

10.22059/imj.2023.349193.1007992

چکیده

هدف: سیستم تولید انعطاف‌پذیر FMS، از ایستگاه‌های تولیدی‌ای شکل گرفته است که با سیستمی خودکار به یکدیگر متصل شده‌اند و توسط یک کامپیوتر مرکزی کنترل می‌شوند. هدف اصلی مقاله، بهینه‌سازی انتخاب اجزا و ترکیبات تجهیزات با حداقل آزمایش و بیشترین دقت نتایج در این سیستم است که می‌تواند در کاهش هزینه‌ها، بهبود فرایندها و افزایش بازده تولید تأثیر بسزایی داشته باشد. مطالعه موردی این پژوهش صنعت الکترونیک است. در این صنعت فرایندهای تولیدی بسیار پیچیده است و استفاده از اتوماسیون ضرورت دارد. در واقع انتخاب بهترین ترکیب از تجهیزات پیشرفته و اتوماتیک برای دستیابی به انعطاف‌پذیری سیستم تولیدی، مسئلۀ بسیار مهمی برای مدیران خط است تا بتوانند پاسخ‌گویی به سفارش‌های مشتریان به‌موقع پاسخ دهند. این در حالی است که مسئله در دسته H2C قرار دارد و می‌بایست ترکیب بهینه‌ای از تجهیزات انتخاب شود.
روش: در این پژوهش برای دستیابی به بهترین ترکیب از تجهیزات، از روش D-Optimal دو مرحله‌ای استفاده شده است. برای محاسبۀ شاخص‌های تولید به‌ازای ترکیبات تجهیزات مورد استفاده در وضعیت فعلی خط تولید و سایر ترکیبات، شبیه‌سازی گسسته صورت می‌گیرد. طبق نتایج محاسبه شده برای شاخص‌ها و روش وزن‌دهی، سطح پاسخ «y» مربوط به آزمایش‌ها محاسبه می‌شود. هر یک از نتایج به‌دست‌آمده، ورودی یک آزمایش در طرح D-Optimal است. آزمایش‌ها بر اساس سطح اتوماسیون تجهیزات دسته‌بندی می‌شوند و به‌دلیل نزدیک‌بودن سطح پاسخ آن‌ها، فقط برای هر دسته از آن‌ها شبیه‌سازی صورت می‌گیرد تا با آزمایش‌ها نتایج دقیق‌تر و هزینه کمتر شود. در مرحلۀ اول طرح، کلیۀ ترکیبات از تجهیزات بررسی می‌شود و در مرحلۀ دوم طرح، برای کلیۀ حالات دسته‌بندی منتخب از مرحلۀ اول، شبیه‌سازی صورت می‌گیرد و با توجه به سطح پاسخ به‌دست‌آمده از آن‌ها، طرح بررسی می‌شود.
یافته‌ها: در مرحلۀ اول، کلیۀ حالات از سطح اتوماسیون تجهیزات دسته‌بندی و از هر دسته، یک نمونه انتخاب شد؛ سپس کلیۀ حالات ترکیبات از اجزای FMS و تجهیزات اتوماتیک بررسی شد. بر اساس محاسبات صورت گرفته، سطح پاسخ بهترین ترکیب در این مرحله 09/14733 به‌دست آمد و با بررسی دقیق جزئیات، سطح پاسخ‌های این دسته و کلیۀ حالات آن در مرحلۀ دوم، مقدار سطح پاسخ برای بهترین حالت برابر با 88/151317 به‌دست آمد. بر این اساس می‌توان نتیجه گرفت که میزان استفادۀ بهینه از تجهیزات اتوماتیک 8/92 درصد است. بر این اساس، فهرستی از بهترین ترکیب تجهیزات انتخاب شده پیشنهاد شده است؛ سپس بهره‌وری خط در بهترین حالت از ترکیبات تجهیزاتی که مشخص شد با حالت دوم محاسبه شده از ترکیبات بهینه و وضع موجود خط مقایسه شده است.
نتیجه‌گیری: طبق نتایج به‌دست‌آمده از طراحی آزمایش‌ها، استفادۀ صرف از تجهیزات کاملاً اتوماتیک، کارایی سیستم‌های تولیدی را افزایش نمی‌دهد؛ بلکه برآورد میزان اتوماسیون در خطوط مونتاژ نیز به محاسبات بسیار دقیق نیاز دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a Two-Stage D-optimal Approach for Selecting Components of Flexible Manufacturing Systems

نویسندگان [English]

  • Nima Pasha 1
  • Fariborz Jolai 2
  • Seyyed Hosein Razavi Haji Agha 3
1 Ph.D. Candidate, Department of Industrial Management, Faculty of Management, Kish International Campus, University of Tehran, Kish, Iran.
2 Prof., Department of Industrial Engineering, School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
3 Associate Prof., Department of Management, Faculty of Management and Financial Sciences, Khatam University, Tehran, Iran.
چکیده [English]

Objective
Flexible Manufacturing Systems (FMS) are integrated workstations that utilize computer-controlled equipment components for production. These systems are managed by a central computer, which significantly enhances the efficiency and productivity of the production process. Accordingly, a case study is conducted on an FMS electrical manufacturing system with complex manufacturing processes, where automation on the production line is crucial. Selecting the optimal number of advanced equipment is a challenging and vital issue for managers aiming to boost productivity and efficiently fulfill customer orders. It is a hard-to-change model, and replacing equipment incurs substantial costs.
 
Methods
This study employs the two-stage D-Optimal method to optimize the combination of FMS elements and equipment. The D-Optimal response level input is derived from discrete-event simulation results. Depending on the conditions, various FMS equipment is allocated to each process. Each simulation result for element combinations serves as input for the experimental design. Additionally, the response level (y) of experiments from various FMS indexes is calculated using a weighting method. To reduce the number of experiments and increase data accuracy in a case study with hard-to-change parameters, all combinations are categorized based on the number of automated and manual equipment. The two stages of the D-Optimal design are defined as follows: In the first stage, all combinations within these categories are investigated. In the second stage, the optimized combination from the first stage is analyzed to determine the best configuration. Experiments in the top category from the first stage are simulated and further evaluated in the second stage of the D-Optimal method.
 
Results
In the first phase, all advanced production equipment and FMS elements were considered. After selecting the best-calculated “y” value, which was 147,133.09 in this category, another D-Optimal design was optimized in the second phase to determine the best combination. This combination yielded a “y” value of 151,317.88, representing an improvement over the best category in the first phase of the D-Optimal design. Consequently, the optimized combination from the first phase was further refined. The results from the developed D-Optimal method and the second phase indicate that the optimal combination of equipment involves using automated and FMS equipment for approximately 92.8% of the total components. Finally, a list of recommended FMS equipment is provided, and its productivity is compared with the productivity at the current level and a higher degree of automation for this production line.
 
Conclusion
In summary, the results of the experimental design show that using advanced production systems does not necessarily improve system efficiency, and determining optimal combinations requires accurate calculations.

کلیدواژه‌ها [English]

  • Computer-aided design of experiments
  • Flexible manufacturing systems
  • Two-stage D-optimal design
  • Work-in-Process
اسماعیل‌زاده، مریم؛ کاظمی، عالیه و صفری، حسین (1401). شناسایی و اولویت‌بندی چالش‌های پیاده‌سازی سیستم‌های خدمات محصول هوشمند به‌روش بهترین بدترین راف ـ فازی. مدیریت صنعتی، 14(4)، 539- 564.
عینی سرکله، غلامرضا؛ حافظ الکتب، اشکان؛ توکلی مقدم، رضا و نجفی، اسماعیل (1401). شناسایی موانعِ اصلیِ پیاده‌سازی قراردادهای دوطرفه در زنجیرۀ تأمین با استفاده از روش ترکیبی بهترین ـ بدترین و واسپاس با رویکرد فازی (مطالعه موردی: صنعت خودروسازی کشور). مدیریت صنعتی، 14(2)، 310- 336.
فخرزاد، محمدباقر، برخورداری، فرزاد و جعفری ندوشن، عباسعلی (1400). ارائۀ مدل ریاضی برای مسئله چیدمان سلولی پویا بر اساس زمان‌بندی، تخصیص کارگر و محدودیت منابع مالی. مدیریت صنعتی، 13(3)، 435- 463.
محبوبی، مرصع، کردرستمی، سهراب، امیرتیموری، علیرضا و قانع کنفی، آرمین (1400). تحلیل عملکرد و محاسبه نرخ‌های حاشیه‌ای با حضور عوامل ورودی ـ خروجی نامطلوب و شاخص‌های ‌کنترل‌ناپذیر. مدیریت صنعتی، 13(3)، 492- 513.
 
References
Ahmad, Sh., Ali, M., Khan, Z., Asjad., M. (2022). Investigating the effect of input variables on the performance of FMS followed by multi-response optimization: A simulation study. Materials Today, 64, 1500-1503.
Carneiro, A.F., Carneiro, C.N., de N Pires, L., Teixeira, L.S.G., Azcarate, S.M., de S Dias, F. (2020). D-optimal mixture design for the optimization of extraction induced by emulsion breaking for multielemental determination in edible vegetable oils by microwave-induced plasma optical emission spectrometry. Talanta, 219, 121218.
ElMaraghy, H. & Caggiano, A. (2014). Flexible manufacturing system. CIRP encyclopedia of production engineering, 524-530.
Daniyan, I., Mpofu, K., Ramatsetse, B., Zeferino, E., Monzambe, G., Sekano, E. (2021). Design and simulation of a flexible manufacturing system fo manufacturing operations of railcar subassemblies. Procedia Manufacturing, 54, 112-117.
Esmeilzadeh, M., Kazemi, A., & Safari, H. (2022). Identifying and Prioritizing Challenges of Implementing Smart Product-service Systems Using the Best-worst Rough-fuzzy Method. Industrial Management Journal, 14(4), 539-564. (in Persian)
Fakhrzad, M.B., Barkhordary, F., Jafari Nodoushan, A. (2021). A Mathematical Model for Dynamic Cell Formation Problem Based on Scheduling, Worker Allocation, and Financial Resources Constraint. Industrial Management Journal, 13(3), 435-463.
(in Persian)
Einy - Sarkalleh, Gh., Hafezalkotob, A., Tavakkoli - Moghaddam, R., Najafi, E. (2022). Identifying the Main Obstacles to Carrying Out Bi-directional Contracts in Supply Chains by Adopting the Best-worst Method and Undertaking Weighted Aggregates Sum Product Assessment: A Fuzzy Approach. Industrial Management Journal, 14(2), 310-336.
(in Persian)
Esfe, M., Motallebi,S., Toghraei, D. (2022). Optimal viscosity modelling of 10W40 oil-based MWCNT (40%)-TiO2 (60%) nanofluid using Response Surface Methodology (RSM). Heliyon, 8(12).
Gopi, S., Chandra, A. (2021). Solving distributed FMS scheduling problems with/ without breakdowns: Simulation optimization approach. Materials Today: Proceedings, 47, 4879-4884.
Groover, M.P. (2020). Automation, Production Systems, and Computer Integrated Manufacturing. Prentice Hall.
Hernandez, J., Cespedes, .E., Gutierrez, D., Sanchez-Londoño, D., Barbieri, G., Abolghasem, S., Romero, D. & Fumagalli, L. (2020). Human-Computer-Machine Interaction for the Supervision of Flexible Manufacturing Systems: A Case Study. IFAC-Papers OnLine, 53(2), 10550-10555.
Jain, V., & Raj, T. (2016). Modeling and analysis of FMS performance variables by ISM, SEM and GTMA approach. International journal of production economics, 171, 84-96.
Javaid, M., Haleem, A., Pratap Singh, R., Suman, R. (2022). Enabling flexible manufacturing system (FMS) through the applications of industry 4.0 technologies. Internet of Things and Cyber-Physical Systems, 2, 49-62.
Kumar, M.V., Kumar, M., Krishna, S., Kumar, K. (2020). Optimization of CNC Turning Parameters in Machining EN19 using Face Centered Central Composite Design Based RSM . International Journal of Recent Technology and Engineering (IJRTE), 2277-3878.
Li, J., Pang, D., Zheng, Y., Guan, X., Le. X. (2022). A flexible manufacturing assembly system with deep reinforcement learning. Control Engineering Practice, 118, 104957.
Liu, X., Yue, R., Chatterjee, K. (2020). Geometric characterization of D-optimal designs for random coefficient regression models. Statistics & Probability Letters, 159, 108696.
Liu, X., Yue, R., Wong, W. (2018). D -optimal design for the heteroscedastic Berman model on an arc. Journal of Multivariate Analysis, 168, 131-141.
Mahmooda, K., Karaulova, T., Otto, T., Shevtshenko, E. (2017). Performance Analysis of a Flexible Manufacturing System (FMS). The 50th CIRP Conference on Manufacturing Systems.
Montgomeri, D. C. (2012). Design and Analysis of Experiments. John Wiley & Sons Inc.
Mahboubi, M., Kordrostami, S., Amirteimoori, A., Ghane-Kanafi, A. (2021). Performance Analysis and Calculation of Marginal Rates in the Presence of Undesirable Input-output Factors and Non-Discretionary Indexes. Industrial Management Journal, 13(3), 492-513. (in Persian)
Mahmooda, K., Karaulova, T., Otto, T., Shevtshenko, E. (2017). Performance Analysis of a Flexible Manufacturing System (FMS). The 50th CIRP Conference on Manufacturing Systems.
Myers, R., Montgomery, D.C., Anderson-Cook, Ch. (2016). Response Surface Methodology: Process and Product Optimization using Designed Experiments. Wiley Series in Probability and Statistics.
Nguyen, H. X., Bae, W., Ryoo, W.S., Nam, M.J., & Tu, T. N. (2014). Application of D-optimal Design for Modeling and Optimization of Operation Conditions in SAGD Process. Utilization, and Environmental Effects, 36(19), 2142-2153.
Nylund, H., Valjus, V., Toivonen, V., Lanz, M. & Nieminen, H. (2019). The virtual FMS–an engineering education environment. Procedia manufacturing, 31, 251-257.
Otieno, D., Lee, E.J., Lee, S.G., Richard, C., & Kang, H.W. (2020). Optimizing process of brewing onion peel tea using a response surface methodology. NFS Journal, 20, 22-27.
Qu, Sh., Hu, Y., Ren, W., Yang. X. (2021). Coordinative scheduling of the mobile robots and machines based on hybrid GA in flexible manufacturing systems. Procedia CIRP, (pp. Pages 1005-1010).
Radfar, R., Hoseini, H., Farhoodi, M., Ghasemi, I., Średnicka-Tober, D., Shamloo, E., Khaneghah, A. (2020). Optimization of antibacterial and mechanical properties of an active LDPE/starch/nanoclay nanocomposite film incorporated with date palm seed extract using D-optimal mixture design approach. International Journal of Biological Macromolecules, 158, 790-799.
Saleh, B., Ma, A., Fathi, R., Radrika, N., Yang, G., Jiang, J. (2023). Optimized mechanical properties of magnesium matrix composites using RSM and ANN. Materials Science and Engineering: B, 290, 116303.
Wangui, P., Okango, A.,Ranymbo, A. (2019). Selection of Second Order Models’ Design Using D-, A-, E-, T Optimality Criteria. Asian Journal of Probability and Statistics, 5(2), 1-15.
Wenzelburger, P. (2019). A Petri Net Modeling Framework for the Control of Flexible Manufacturing Systems. IFAC-PapersOnLine, 52(13), 492-498.
Zhang, X., Ming, X., Bao, Y. (2022). A flexible smart manufacturing system in mass personalization manufacturing model based on multi-module-platform, multi-virtual-unit, and multi-production-line. Computers & Industrial Engineering, 171, 108379.
Zahraee, S. M., Rohani, J., Wong, K.. (2018). Application of computer simulation experiment and response surface methodology for productivity improvement in a continuous production line: Case study. Journal of King Saud University – Engineering Sciences, 30(3), 207-217.