اسماعیلزاده، مریم؛ کاظمی، عالیه و صفری، حسین (1401). شناسایی و اولویتبندی چالشهای پیادهسازی سیستمهای خدمات محصول هوشمند بهروش بهترین بدترین راف ـ فازی. مدیریت صنعتی، 14(4)، 539- 564.
عینی سرکله، غلامرضا؛ حافظ الکتب، اشکان؛ توکلی مقدم، رضا و نجفی، اسماعیل (1401). شناسایی موانعِ اصلیِ پیادهسازی قراردادهای دوطرفه در زنجیرۀ تأمین با استفاده از روش ترکیبی بهترین ـ بدترین و واسپاس با رویکرد فازی (مطالعه موردی: صنعت خودروسازی کشور). مدیریت صنعتی، 14(2)، 310- 336.
فخرزاد، محمدباقر، برخورداری، فرزاد و جعفری ندوشن، عباسعلی (1400). ارائۀ مدل ریاضی برای مسئله چیدمان سلولی پویا بر اساس زمانبندی، تخصیص کارگر و محدودیت منابع مالی. مدیریت صنعتی، 13(3)، 435- 463.
محبوبی، مرصع، کردرستمی، سهراب، امیرتیموری، علیرضا و قانع کنفی، آرمین (1400). تحلیل عملکرد و محاسبه نرخهای حاشیهای با حضور عوامل ورودی ـ خروجی نامطلوب و شاخصهای کنترلناپذیر. مدیریت صنعتی، 13(3)، 492- 513.
References
Ahmad, Sh., Ali, M., Khan, Z., Asjad., M. (2022). Investigating the effect of input variables on the performance of FMS followed by multi-response optimization: A simulation study. Materials Today, 64, 1500-1503.
Carneiro, A.F., Carneiro, C.N., de N Pires, L., Teixeira, L.S.G., Azcarate, S.M., de S Dias, F. (2020). D-optimal mixture design for the optimization of extraction induced by emulsion breaking for multielemental determination in edible vegetable oils by microwave-induced plasma optical emission spectrometry. Talanta, 219, 121218.
ElMaraghy, H. & Caggiano, A. (2014). Flexible manufacturing system. CIRP encyclopedia of production engineering, 524-530.
Daniyan, I., Mpofu, K., Ramatsetse, B., Zeferino, E., Monzambe, G., Sekano, E. (2021). Design and simulation of a flexible manufacturing system fo manufacturing operations of railcar subassemblies. Procedia Manufacturing, 54, 112-117.
Esmeilzadeh, M., Kazemi, A., & Safari, H. (2022). Identifying and Prioritizing Challenges of Implementing Smart Product-service Systems Using the Best-worst Rough-fuzzy Method. Industrial Management Journal, 14(4), 539-564. (in Persian)
Fakhrzad, M.B., Barkhordary, F., Jafari Nodoushan, A. (2021). A Mathematical Model for Dynamic Cell Formation Problem Based on Scheduling, Worker Allocation, and Financial Resources Constraint. Industrial Management Journal, 13(3), 435-463.
(in Persian)
Einy - Sarkalleh, Gh., Hafezalkotob, A., Tavakkoli - Moghaddam, R., Najafi, E. (2022). Identifying the Main Obstacles to Carrying Out Bi-directional Contracts in Supply Chains by Adopting the Best-worst Method and Undertaking Weighted Aggregates Sum Product Assessment: A Fuzzy Approach. Industrial Management Journal, 14(2), 310-336.
(in Persian)
Esfe, M., Motallebi,S., Toghraei, D. (2022). Optimal viscosity modelling of 10W40 oil-based MWCNT (40%)-TiO2 (60%) nanofluid using Response Surface Methodology (RSM). Heliyon, 8(12).
Gopi, S., Chandra, A. (2021). Solving distributed FMS scheduling problems with/ without breakdowns: Simulation optimization approach. Materials Today: Proceedings, 47, 4879-4884.
Groover, M.P. (2020). Automation, Production Systems, and Computer Integrated Manufacturing. Prentice Hall.
Hernandez, J., Cespedes, .E., Gutierrez, D., Sanchez-Londoño, D., Barbieri, G., Abolghasem, S., Romero, D. & Fumagalli, L. (2020). Human-Computer-Machine Interaction for the Supervision of Flexible Manufacturing Systems: A Case Study. IFAC-Papers OnLine, 53(2), 10550-10555.
Jain, V., & Raj, T. (2016). Modeling and analysis of FMS performance variables by ISM, SEM and GTMA approach. International journal of production economics, 171, 84-96.
Javaid, M., Haleem, A., Pratap Singh, R., Suman, R. (2022). Enabling flexible manufacturing system (FMS) through the applications of industry 4.0 technologies. Internet of Things and Cyber-Physical Systems, 2, 49-62.
Kumar, M.V., Kumar, M., Krishna, S., Kumar, K. (2020). Optimization of CNC Turning Parameters in Machining EN19 using Face Centered Central Composite Design Based RSM . International Journal of Recent Technology and Engineering (IJRTE), 2277-3878.
Li, J., Pang, D., Zheng, Y., Guan, X., Le. X. (2022). A flexible manufacturing assembly system with deep reinforcement learning. Control Engineering Practice, 118, 104957.
Liu, X., Yue, R., Chatterjee, K. (2020). Geometric characterization of D-optimal designs for random coefficient regression models. Statistics & Probability Letters, 159, 108696.
Liu, X., Yue, R., Wong, W. (2018). D -optimal design for the heteroscedastic Berman model on an arc. Journal of Multivariate Analysis, 168, 131-141.
Mahmooda, K., Karaulova, T., Otto, T., Shevtshenko, E. (2017). Performance Analysis of a Flexible Manufacturing System (FMS). The 50th CIRP Conference on Manufacturing Systems.
Montgomeri, D. C. (2012). Design and Analysis of Experiments. John Wiley & Sons Inc.
Mahboubi, M., Kordrostami, S., Amirteimoori, A., Ghane-Kanafi, A. (2021). Performance Analysis and Calculation of Marginal Rates in the Presence of Undesirable Input-output Factors and Non-Discretionary Indexes. Industrial Management Journal, 13(3), 492-513. (in Persian)
Mahmooda, K., Karaulova, T., Otto, T., Shevtshenko, E. (2017). Performance Analysis of a Flexible Manufacturing System (FMS). The 50th CIRP Conference on Manufacturing Systems.
Myers, R., Montgomery, D.C., Anderson-Cook, Ch. (2016). Response Surface Methodology: Process and Product Optimization using Designed Experiments. Wiley Series in Probability and Statistics.
Nguyen, H. X., Bae, W., Ryoo, W.S., Nam, M.J., & Tu, T. N. (2014). Application of D-optimal Design for Modeling and Optimization of Operation Conditions in SAGD Process. Utilization, and Environmental Effects, 36(19), 2142-2153.
Nylund, H., Valjus, V., Toivonen, V., Lanz, M. & Nieminen, H. (2019). The virtual FMS–an engineering education environment. Procedia manufacturing, 31, 251-257.
Otieno, D., Lee, E.J., Lee, S.G., Richard, C., & Kang, H.W. (2020). Optimizing process of brewing onion peel tea using a response surface methodology. NFS Journal, 20, 22-27.
Qu, Sh., Hu, Y., Ren, W., Yang. X. (2021). Coordinative scheduling of the mobile robots and machines based on hybrid GA in flexible manufacturing systems. Procedia CIRP, (pp. Pages 1005-1010).
Radfar, R., Hoseini, H., Farhoodi, M., Ghasemi, I., Średnicka-Tober, D., Shamloo, E., Khaneghah, A. (2020). Optimization of antibacterial and mechanical properties of an active LDPE/starch/nanoclay nanocomposite film incorporated with date palm seed extract using D-optimal mixture design approach. International Journal of Biological Macromolecules, 158, 790-799.
Saleh, B., Ma, A., Fathi, R., Radrika, N., Yang, G., Jiang, J. (2023). Optimized mechanical properties of magnesium matrix composites using RSM and ANN. Materials Science and Engineering: B, 290, 116303.
Wangui, P., Okango, A.,Ranymbo, A. (2019). Selection of Second Order Models’ Design Using D-, A-, E-, T Optimality Criteria. Asian Journal of Probability and Statistics, 5(2), 1-15.
Wenzelburger, P. (2019). A Petri Net Modeling Framework for the Control of Flexible Manufacturing Systems. IFAC-PapersOnLine, 52(13), 492-498.
Zhang, X., Ming, X., Bao, Y. (2022). A flexible smart manufacturing system in mass personalization manufacturing model based on multi-module-platform, multi-virtual-unit, and multi-production-line. Computers & Industrial Engineering, 171, 108379.
Zahraee, S. M., Rohani, J., Wong, K.. (2018). Application of computer simulation experiment and response surface methodology for productivity improvement in a continuous production line: Case study. Journal of King Saud University – Engineering Sciences, 30(3), 207-217.