ارائه مدلی به‌منظور مکان‌یابی دستگاه‌های خودپرداز بر اساس تراکنش‌ها در شبکه دستگاه‌های خودپرداز

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دکتری، گروه بیوانفورماتیک، دانشکده بیوانفورماتیک، دانشگاه تهران، تهران، ایران.

2 کارشناس ارشد، گروه مهندسی کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه اصفهان، اصفهان، ایران.

3 مربی، گروه مدیریت، دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران.

چکیده

هدف: مکان جغرافیایی دستگاه‌های خودپرداز، داده‌ای کلیدی است که تجزیه‌وتحلیل آن برای پاسخ به بسیاری از تصمیم‌های مهم بانکی و اقتصادی راه‌گشاست. با توجه به محدودیت‌های ناشی از نگرش بسته در اکوسیستم بانکی کشور، امکان در دست داشتن یکپارچۀ مکان‌های جغرافیایی تمامی دستگاه‌های خودپرداز میسر نیست. در مطالعۀ حاضر که از نوع کاربردی با روش توصیفی – هم‌بستگی است به‌کمک داده‌های موجود در شرکت داتیس آرین قشم (داتین)، طول و عرض جغرافیایی این دستگاه‌ها با استفاده از الگوریتم پیش‌بینی مکان دستگاه‌های خودپرداز به‌دست آمده است؛ زیرا این داده‌ها در پیاده‌سازی بسیاری از الگوریتم‌های هوش مصنوعی لازم و ضروری است و نقش اساسی ایفا می‌کند.
روش: الگوریتم مکان‌یابی ارائه شده از سه مرحله کلی تشکیل شده است. در این الگوریتم، ابتدا گراف دوبخشی کاربر ـ مکان تشکیل می‌شود. ارتباط بین کاربران با استفاده از تراکنش‌هایی که کاربران انجام داده‌اند، استخراج می‌شود و ارتباط بین مکان‌های جغرافیایی با استفاده از دستگاه‌هایی که مکان معلومی دارند، تشکیل می‌شود. در مرحله بعد با استفاده از گرافِ دو بخشیِ تشکیل شده، دو شاخص شباهت مکانی و شباهت همسایگی در شبکه خودپردازها محاسبه می‌شود. در همین مرحله با استفاده از ماژول یافتن فاصلۀ زمانی ـ مکانی که خود شامل دو مرحله یافتن خودپردازهای هم‌مکان و خوشه‌بندی آن‌هاست، اجرا می‌شود و ویژگی‌هایی به یال‌ها اختصاص داده می‌شود که بر فاصله به همراه میزان شباهتِ دو خودپرداز (نودهای متصل‌کنندۀ یال‌ها) مبتنی است. مرحله سوم در این الگوریتم برای افزایش دقت نتایج طراحی شده است و شامل فیلتر کردن یال‌هایی است که با اطمینان پایین با استفاده از شباهت به‌دست‌آمده از مرحله قبل حاصل شده است و شباهت کسینوسی دو دستگاه خودپرداز است. در نهایت با استفاده از یال‌ها و دقت به‌دست‌آمده برای هر خودپرداز، طول و عرض جغرافیایی به همراه احتمال درستی گزارش می‌شود.
یافته‌ها: با استفاده از محل استقرار ۲۱۰۰ خودپرداز (بخشی از داده‌های موجود در شرکت داتیس آرین قشم) و بررسی ۵۶۲۶۰۹۷۹۰ تراکنش در بازه زمانی چهار ماهه، از ابتدای فروردین ماه سال ۱۴۰۱ تا پایان تیرماه همان سال، محل ۴۲۰ خودپردازِ موجود در کل کشور شناسایی شد. نتایج به‌دست‌آمده نشان‌دهنده اعتبار عالی الگوریتم (95/80درصد) است.
نتیجه‌گیری: در این مطالعه با کاربست روش توسعه داده شده در حوزه بانکداری، به پیش‌بینی یال در شبکه‌های اجتماعی مبتنی بر مکان پرداخته شد و با استفاده از آن، طول و عرض جغرافیایی دستگاه‌های خودپرداز در سطح کشور تخمین زده شد. شبکه‌های اجتماعی مبتنی بر مکان، به‌دلیل ادغام داده‌ها در چندین سطح، حل مسائلی را ممکن می‌سازند که تا پیش از این امکان‌پذیر نبود. استفاده از این روش‌ها، به‌خاطر استفاده از الگوریتم‌ها و پایگاده داده مبتنی بر گراف، هزینه پردازشی کمتر و سرعت بیشتری دارند و نتایج دقیق‌تری را ارائه می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying the Latitude and Longitude of ATMs in ATM Networks

نویسندگان [English]

  • Niloofar Haghjoo 1
  • Mohammad rahmati 2
  • Ali Zare Mirakabad 3
1 Ph.D., Department of Bioinformatics, University of Tehran, Tehran, Iran.
2 MSc., Department of Computer Engineering, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.
3 Lecture, Department of Management, College of Management, University of Tehran, Tehran, Iran.
چکیده [English]

Objective
The geographical positioning of Automated Teller Machines (ATMs) is a pivotal data point that significantly aids in the analytical process and decision-making for a multitude of critical banking and economic determinations. Given the constraints imposed by the insular viewpoint prevalent in the nation’s banking ecosystem, maintaining a consolidated perspective of all ATMs’ geographical locations is not feasible. In this study, we utilized the ATM Location Prediction (ATMLP) algorithm to determine these machines’ geographical coordinates. This data is indispensable and plays a cardinal role in the implementation of a multitude of artificial intelligence algorithms.
 
Methods
The ATMLP algorithm comprises three primary stages. The first stage involves constructing a bipartite user-location graph. The relationship between users is derived from transactional interactions, while the relationship between geographical locations is established using devices with known locations. The second stage involves the computation of two crucial indices: spatial similarity and neighborhood similarity, within the ATM network using the bipartite graph. This stage also includes a time-space distance finding module, which has two steps in its procedure: finding co-located ATMs and then clustering them. Distance-based features are assigned to edges because they reflect the similarity level between the pair of ATMs, nodes connected by edges. The third stage of the algorithm fine-tunes the results for better accuracy. In this process, low-confidence edges are filtered out by leveraging similarity metrics from the previous stage and cosine similarity between pairs of ATMs. In the end, the algorithm reports the geographical latitude and longitude for each ATM, plus the probability score indicating how correct it is.
 
Results
By leveraging 2100 ATM locations (a portion of the data available in Datis Arian Qeshm Company) and examining 562609790 transactions in four months from the start of April 2022 to the end of July 2022, we identified the location of 4000 existing ATMs across the country belonging to 12 banks. The results obtained indicate a high credibility of the algorithm (80.95%).
 
Conclusion
In this study, we applied a developed method in banking to predict edges in location-based social networks, and using it, we accurately estimated the geographical coordinates - latitude and longitude - of ATMs on a national scale. Location-based social networks, due to data integration at multiple levels, enable problem-solving that was previously impossible. The use of these methods has less processing cost and higher speed due to the use of algorithms and graph-based databases, and they provide more accurate results. This study has significant implications for future research in banking technology, particularly about location prediction for ATMs.

کلیدواژه‌ها [English]

  • ATM location prediction algorithm
  • ATMs
  • Link prediction
  • Location-based social networks
آقا قلیزاده سیار، علیرضا؛ معتدل، محمدرضا و پورابراهیمی، علیرضا (1395). ارائه یک مدل جدید برای سناریوسازی تقاضای دستگاه‌های خودپرداز (مورد مطالعه: دستگاه‌های خودپرداز شهر تهران). آینده‌پژوهی مدیریت، 30(3)، 175-188.‎
سنگبر، محمدعلی؛ صافی، محمدرضا؛ آذر، عادل و ربیعه، مسعود (1400). ارائه چارچوبی کمّی برای نگاشت شناختی فازی لایه‌ای با استفاده از رویکرد ترکیبی «نقشه خودسازمان‌دهنده» و «تئوری گراف و رویکرد ماتریس» (SOM-GTMA). مدیریت صنعتی، 13(1)، 80- 104.
عالم تبریز، اکبر؛ طلایی، حمیدرضا و مرادی، الناز (1392). ارزیابی عوامل کلیدی پیاده‌سازی موفق تولید در کلاس جهانی با استفاده از رویکرد یکپارچه مدل‌سازی ساختاری تفسیری (ISM)، تئوری گراف و رویکرد ماتریسی (GTMA) (مطالعه موردی: گروه ایران‌خودرو و سایپا). مدیریت صنعتی، 5(1)، 63- 81.
میرفخرالدینی، سیدحیدر و امیری، یاسر (1389). ارائه راه‌کارهای ارتقای خدمات الکترونیکی بانک‌ها با رویکرد ANP، BSC فازی و TOPSIS فازی (مطالعه موردی: بانک‌های دولتی منتخب استان فارس). مدیریت صنعتی، 2(2)، 141- 298.
 
References
Abdulatif, A., Samarasinghe, R. & Thilakarathne, N. N. (2023). A Novel Robust Geolocation-Based Multi-Factor Authentication Method for Securing ATM Payment Transactions. Applied Sciences, 13(19), 10743.
Adamic, L. A. & Adar, E. (2003). Friends and neighbors on the web. Social networks, 25(3), 211-230.
Adesina, E., Adewuyi, A., Morenikeji, G., Ogundele, T. & Babatunde, F. (2022). Optimal Coverage Analysis of Existing Automated Teller Machines within Minna Metropolis, Nigeria using the Best-Fit Model. International Journal of Environment and Geoinformatics, 9(1), 127-139.
Agha Gholizadeh Sayyar, A., Motadel, M. & Pour ebrahimi, A. (2019). Presenting a new model for ATM demand scenario. Journal of future studies management, 30 (3), 175-188.
(in Persian)
Alem Tabriz, A., Talaie, H. R. & Moradi, E. (2013). Evaluating the Key Factors of Successful Implementation of World Class Manufacturing Using an Integrated Approach of Interpretive Structural Modeling (ISM), Graph Theory and Matrix Approach (GTMA): A Case Study for Iran Khodro and Saipa in Iran. Industrial Management Journal, 5(1), 63-81. doi: 10.22059/imj.2013.35683 (in Persian)
Allamanis, M., Scellato, S. & Mascolo, C. (2012, November). Evolution of a location-based online social network: analysis and models. In Proceedings of the 2012 internet measurement conference (pp. 145-158).
Barabasi, A. L. (2005). The origin of bursts and heavy tails in human dynamics. Nature, 435(7039), 207-211.
Berahmand, K., Nasiri, E., Rostami, M. & Forouzandeh, S. (2021). A modified DeepWalk method for link prediction in attributed social network. Computing, 103, 2227-2249.
Brockmann, D., Hufnagel, L. & Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075), 462-465.
Clauset, A., Moore, C. & Newman, M. E. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98-101.
Engerman, D. C. (2007). Bernath lecture: American knowledge and global power. Diplomatic History, 31(4), 599-622.
Gurgul, H. & Suder, M. (2018). Impact of ATM location on its profitability in Malopolskie and Podkarpackie provinces. Managerial Economics, 19(1).
Heckerman, D., Meek, C. & Koller, D. (2004). Probabilistic models for relational data. Technical Report MSR-TR-2004-30, Microsoft Research.
Huang, Z., Li, X. & Chen, H. (2005, June). Link prediction approach to collaborative filtering. In Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries (pp. 141-142).
Jog, V. V. & Pardeshi, N. R. (2014). Advanced security model for detecting frauds in ATM transaction. International Journal of Computer Applications, 95(15), 47-50.
Lei, C. & Ruan, J. (2013). A novel link prediction algorithm for reconstructing protein–protein interaction networks by topological similarity. Bioinformatics, 29(3), 355-364.
Li, H., Ge, Y., Hong, R. & Zhu, H. (2016, August). Point-of-interest recommendations: Learning potential check-ins from friends. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 975-984).
Li, Y. & Kettinger, W. J. (2022). Testing the relationship between information and knowledge in computer-aided decision-making. Information Systems Frontiers, 24(6), 1827-1843.
Liben-Nowell, D. & Kleinberg, J. (2003, November). The link prediction problem for social networks. In Proceedings of the twelfth international conference on Information and knowledge management (pp. 556-559).
Lü, L. & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications, 390(6), 1150-1170.
Mirfakhraddini, S. H. & Amiri, Y. (2010). Proposing solutions to improve E-banking services using BSC, FANP & FUZZY TOPSIS (Case study: Selected banks in Fars province). Industrial Management Journal, 2(2), 141-298. (in Persian)
Mwatsika, C. (2016). Factors influencing customer satisfaction with ATM banking. International Journal of Academic Research in Business and Social Sciences, 6(2), 26-41.
Narayanan, M. & Cherukuri, A. K. (2016). A study and analysis of recommendation systems for location-based social network (LBSN) with big data. IIMB Management Review, 28(1), 25-30.
Nasiri, E., Berahmand, K., Samei, Z. & Li, Y. (2022). Impact of centrality measures on the common neighbors in link prediction for multiplex networks. Big Data, 10(2), 138-150.
Nazari-Ganje, N. & Mirzapour Al-E Hashem, S. M. J. (2020). An integrated location-inventory routing problem for ATMs in banking industry: a green approach. Modeling and Optimization in Green Logistics, 27-52.
Newman, M. E. (2001). Clustering and preferential attachment in growing networks. Physical review E, 64(2), 025102.
Pao, H. K., Fadlil, J., Lin, H. Y. & Chen, K. T. (2012). Trajectory analysis for user verification and recognition. Knowledge-Based Systems, 34, 81-90.
Rastogi, A., Sharma, Y., Mukherji, S., Kaliyar, R. K. & Baghel, V. K. (2023, August). Predictive Analysis of Optimal Automated Teller Machine Site Selection Using Machine Learning and Deep Learning: A Comprehensive Study on Variables, Challenges, and Opportunities. In 2023 International Conference on Electrical, Electronics, Communication and Computers (ELEXCOM) (pp. 1-6). IEEE.
Rukpakavong, W., Subsomboon, K. & Nilpanich, S. (2022). Mutual authentication for cardless atm withdrawal using location factor. Creative Science, 14(2), 245396-245396.
Safdari, H., Contisciani, M. & De Bacco, C. (2022). Reciprocity, community detection, and link prediction in dynamic networks. Journal of Physics: Complexity, 3(1), 015010.
Sangbor, M. A., Safi, M. R., Azar, A. & Rabieh, M. (2021). Development a Quantitative Framework for Multilayer Fuzzy Cognitive Maps by combining "Self-Organizing Map" and "Graph Theory and Matrix Approach" (SOM-GTMA). Industrial Management Journal, 13(1), 80-104. doi: 10.22059/imj.2021.308177.1007769 (in Persian)
Suwirya, I. P., Candiasa, I. M. & Dantes, G. R. (2022). Evaluation of ATM Location Placement Using the K-Means Clustering in BNI Denpasar Regional Office. Journal of Computer Networks, Architecture and High-Performance Computing, 4(2), 158-168.
Takenova, K. & Guleva, V. Y. (2023). Determination of Optimal Locations for ATM Network Service Points. Procedia Computer Science, 229, 198-207.
Taskar, B., Abbeel, P., Wong, M. F. & Koller, D. (2007). Relational markov networks. Introduction to statistical relational learning, 175, 200.
Trang, P. T., Sonb, N. L. N. & Giangc, P. T. (2019). The Influence of ATM location characteristics on ATM usage in Vietnam. International Journal of Advanced Engineering and Management Research 4(03).
Wei, X., Liu, Y., Sun, J., Jiang, Y., Tang, Q. & Yuan, K. (2023). Dual subgraph-based graph neural network for friendship prediction in location-based social networks. ACM Transactions on Knowledge Discovery from Data, 17(3), 1-28.
Yuan, J., Zheng, Y., Xie, X. & Sun, G. (2011, August). Driving with knowledge from the physical world. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 316-324).
Yuana, A., Terkimbi, T.E., Ortwer, A.B., Peter, A., Mwuese, G.G. & Inya, O.J. (2022). Isolation and Identification of Bacteria on Automated Teller Machines (ATMs) in Makurdi Metropolis. Frontiers in Environmental Microbiology, 8(1), 1-5. https://doi.org/10.11648/j.fem.20220801.11
Zhang, Z., Li, D., Song, Z., Duffield, N. & Zhang, Z. (2023, November). Location-Aware Social Network Recommendation via Temporal Graph Networks. In Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising (pp. 58-61).
Zheng, Y., Zhang, L., Ma, Z., Xie, X. & Ma, W. Y. (2011). Recommending friends and locations based on individual location history. ACM Transactions on the Web (TWEB), 5(1), 1-44.