مقایسۀ عملکرد پرتفولیوی بهینه مبتنی بر توزیع چوله ـ نرمال و توزیع چوله‏ ـ لاپلاس ـ نرمال با رویکرد مبتنی بر میانگین ـ انحراف مطلق ـ آنتروپی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان، سمنان، ایران.

2 دانشیار، گروه مدیریت بازرگانی، دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان، سمنان، ایران.

3 استادیار، گروه آمار، دانشکده ریاضی، آمار و علوم کامپیوتر، دانشگاه سمنان، سمنان، ایران.

چکیده

هدف: اغلب سرمایه‌گذاران تمایل دارند که در سطح معینی از ریسک، به بازده بیشتری دست یابند؛ به همین دلیل بهینه‌سازی پرتفولیو برای تحقق این هدف مفید است. مدل‌ها و روش‌های مختلفی برای انتخاب پرتفولیوی بهینه با رویکردهای مختلف ارائه شده است. هدف این پژوهش، به‌کارگیری روش‌های مبتنی بر توزیع بازده دارایی‌ها به‌منظور بهینه‌سازی پرتفولیو است. در این روش‌ها پیش از انتخاب پرتفولیوی بهینه، نوع توزیع بازده‌ها شناسایی می‌شود و با توجه به نوع توزیع بازده‌ها، روشی مناسب به‌کار گرفته می‌شود. در این پژوهش، عملکرد مدل میانگین ـ انحراف مطلق ـ آنتروپی، مبتنی بر توزیع چوله ـ نرمال و چوله ـ لاپلاس ـ نرمال در تشکیل پرتفولیوی بهینه مقایسه شده است.
روش: داده‌های به‌کار رفته در این پژوهش، بازده‌های ماهانه ۱۸۱ نماد بورسی (متناظر با ۳۳۸ نماد بورسی از جدول مورگان، بر اساس فرمول کوکران برای تعیین حجم نمونه به دست آمد) سهام شرکت‌های پذیرفته شده در بورس سهام و اوراق بهادار تهران است. در این پژوهش، پس از برازش توابع چگالی متناظر با توزیع‌های آماری چوله ـ نرمال و چوله ـ لاپلاس ـ نرمال به بازده‌ها و یافتن برآوردهای حداکثر درست‌نمایی توزیع‌های برازش با استفاده از بسته نرم‌افزاری استاس و نرم‌افزار آر و بررسی پایایی برآوردهای به‌دست‌آمده با به‌کارگیری روش نمونه‌گیری بوت استرپ با تعداد تکرار ۱۰۰۰ بار، روابط متناظر با امید ریاضی توزیعی بازده‌ها و به‌تبع آن، مقدار تابع هدف متناظر با ریسک انحراف مطلق به روش عددی تخمین زده شد. روش بهینه‌سازی پرتفولیو در این پژوهش، بهینه‌سازی سه هدفه حداکثرسازی میانگین بازده، حداقل‌سازی انحراف مطلق و حداکثرسازی آنتروپی با استفاده از روش بهینه‌سازی آرمانی مبتنی بر توزیع‌های آماری چوله ـ نرمال و چوله ـ لاپلاس ـ نرمال است.
یافته‌ها: از مقادیر مشاهده شده آماره‌های توصیفی بازده‌های ماهانه سهام متناظر با نمادهای بورسی، استنباط می‌شود که برخی از سهم‌ها، در مقایسه با توزیع نرمال مقادیر معیارهای چولگی و کشیدگی متفاوتی دارند؛ برای مثال حتی، میزان چولگی نماد «شپنا» منفی است که نشان می‌دهد توزیع بازدهی متناظر با این نماد چوله به چپ است. نمونۀ دیگر، میزان کشیدگی توزیع بازدهی نماد «بساما» است که خیلی زیادتر از کشیدگی توزیع نرمال است. هر دو نمونه بیانگر این موضوع است که توزیع نرمال، توزیع برازش مناسبی برای تبیین توزیعی بازده‌های ماهانه نیست و بهتر است از توزیع‌هایی استفاده شود که به‌نحوی پارامترهایی برای تبیین میزان چولگی و کشیدگی توزیع بازده‌ها دارند. یافته‌های پژوهش نشان داد که مدل مبتنی بر توزیع چوله ـ لاپلاس ـ نرمال در مقایسه با مدل مبتنی بر توزیع چوله ـ نرمال عملکرد بسیار بهتری دارد.
نتیجه‌گیری: دلیل برتری مدل مبتنی بر توزیع چوله ـ لاپلاس ـ نرمال در نظر گرفتن هر دو معیار چولگی و کشیدگی است، بر اساس آماره‌های توصیفی نمادها، میزان کشیدگی اغلب نمادهای بورسی چشمگیر است؛ از این رو در نظر گرفتن ترکیبی از معیارهای (چولگی و کشیدگی) و آنتروپی می‌تواند به عملکرد بهتری منجر شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparing Optimal Portfolio Performance Based on Skew-Normal Distribution and Skew-Laplace-Normal Distribution: A Mean-Absolute Deviation-Entropy Approach

نویسندگان [English]

  • Hila Rezaei 1
  • Gholamhossien Golarzi 2
  • Omid Karimi 3
1 Ph.D. Candidate, Department of Industrial Management, Faculty of Economics, Management and Administrative Affairs, Semnan University, Semnan, Iran.
2 Associate Prof., Department of Business Management, Faculty of Economics, Management and Administrative Affairs, Semnan University, Semnan, Iran.
3 Assistant Prof., Department of Statistics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran.
چکیده [English]

Objective
Investors typically seek to strike the optimal balance between potential returns and associated risks in their trades. Various models have been presented to choose the optimal portfolio using different approaches. one of these methods is based on the statistical distribution of asset return. In these methods, the type of distribution of returns is first identified, and a suitable portfolio selection method is then applied based on this identified distribution type. This study compares the effectiveness of the mean-absolute deviation-entropy model utilizing both Skew-Normal Distribution and Skew-Laplace-Normal Distribution for constructing an optimal portfolio in the Tehran Stock Exchange over 36 months from April 2018 to March 2020.
 
Methods
The data used in this study comprises the monthly returns of 181 companies listed on the Tehran Stock Exchange. These returns were gathered from a statistical population of 338 members utilizing Morgan's table and Cochran’s formula. After fitting density functions for Skew-Normal and Skew-Laplace-Normal distributions to the returns, maximum likelihood estimates were obtained using the Stats package and the optim Function in R software. The reliability of these estimates was then checked using bootstrap sampling with 1,000 repetitions. Subsequently, relationships corresponding to the mathematical expectation of return distribution and the objective function representing the risk of absolute deviation were estimated using numerical methods. Therefore, this paper aimed to propose a multi-objective optimization model, namely a mean-absolute deviation-entropy model for portfolio optimization by using a goal-programming approach based on Skew-Normal Distribution and Skew-Laplace-Normal Distribution. The objective functions of the model were to maximize the mean return, minimize the absolute deviation, and maximize the entropy of the portfolio.
 
Results
It can be inferred from the observed values ​​of the descriptive statistics of the monthly stock returns corresponding to the stock exchange symbols that some stocks have different skewness and kurtosis values ​​compared to the normal distribution. For example, The symbol "Shepna" exhibits negative skewness, indicating a left-skewed distribution. Similarly, the distribution of the "Basama" symbol exceeds the normal distribution. These instances suggest that the normal distribution is inadequate for describing monthly return distributions. Instead, distributions with parameters should be employed to account for skewness and kurtosis. According to the obtained results, the model utilizing the Skew- Laplace- Normal distribution has a higher performance ratio than the model based on the Skew-Normal distribution.
 
Conclusion
The reason for this superiority, where the model utilizing the Skew-Laplace-Normal distribution outperforms the model based on the Skew-Normal distribution, is the incorporation of both skewness and kurtosis criteria within the former. Additionally, upon analyzing the descriptive statistics of the symbols, it's evident that the kurtosis of most stock symbols is substantial. Therefore, integrating a combination of higher-order moments (skewness and kurtosis) along with entropy leads to enhanced performance.
 

کلیدواژه‌ها [English]

  • Absolute deviation
  • Loss function
  • Optimal portfolio selection
  • Shannon entropy
بهزادی، عادل و بختیاری، مصطفی (1393). ارائه مدلی بر مبنای میانگین ـ آنتروپی ـ چولگی برای بهینه‏سازی سبد سهام در محیط فازی. مجله مهندسی مالی و مدیریت اوراق بهادار، 5(19)، 39-55.
خندان، عباس (1402). مقایسه عملکرد میانگین با میانه و دیگر شاخص‌های ریسک در بهینه‌سازی سبد سهام. فصلنامه علمی پژوهشی اقتصاد مقداری، 20(1)، 99- 138.  
دیده‏خانی، حسین؛ عباسی، ابراهیم؛ شیری قهی، امیر و مشاری، محمد (1398). توسعه مدل بهینه‌سازی پرتفوی میانگین ـ انحراف مطلق (MAD) با رویکرد عدم قطعیت ترکیبی تصادفی ـ فازی و در نظر گرفتن نگرش سرمایه‌گذاران به ریسک. مهندسی مالی و مدیریت اوراق بهادار، 10(40)، 84-102.
راعی، رضا و پویان‌فر، احمد (1398). مدیریت سرمایه‌گذاری پیشرفته. تهران: انتشارات سازمان‌ مطالعه ‌و تدوین‌ کتب‌ علوم ‌انسانی ‌دانشگاه‏ها (سمت).
راعی، رضا؛ باجلان، سعید؛ حبیبی، مصطفی و نیکعهد، علی (1396). بهینه‌سازی پرتفوی چندهدفه براساس میانگین، واریانس، آنتروپی و الگوریتم ازدحام ذرات. مدل‌سازی ریسک و مهندسی مالی، 2(3)، 362- 379.
نبی‏زاده، احمد و بهزادی، عادل (1397). گشتاور مراتب بالاتر در بهینه‏سازی پرتفوی با در نظر گرفتن آنتروپی و استفاده از برنامه‏ریزی آرمانی چندجمله‏ای. تحقیقات مالی، 20(2)، 191-208.
 
References
Aksarayli, M. & Pala, O. (2018). A polynomial goal programming model for portfolio optimization based on entropy and higher moments. Expert System Applied, 94, 185-192.
Arditti, F.D. (1971). Another look at mutual fund performance. Journal of Financial and Quantitative Analysis, 6(3), 909-912.
Azzalini, A. (1985). A Class of Distribution which includes the normal ones. Scandinavian Journal of Statistics, 12, 171-178.
Behzadi, A. & Bakhtiari, M. (2013). Presenting a model based on mean- entropy- skewness for stock portfolio optimization in fuzzy environment. Journal of Financial Engineering and Securities Management, 5(19), 39-55. (in Persian)
Bera, A.K. & Park, S.Y. (2008). Optimal Portfolio Diversification Using the Maximum Entropy Principle. Econometric Reviews, 27(15), 484-512.
Choi, B.G., Rujeerapaiboon, N. & Jiang, R. (2016). Multi- period portfolio optimization: Translation of autocorrelation risk to excess variance. Operations Research, 44(6), 801-807.
Dedekhani, H., Abbasi, E., Shiri Qahi, A. & Meshari, M. (2018). Development of mean-absolute deviation (MAD) portfolio optimization model with random- fuzzy mixed uncertainty approach and considering investors attitude to risk. Financial Engineering and Securities Management, 10(40), 84-102. (in Persian)
Erdas, M.L. (2020). Developing a portfolio optimization model based on linear programming under certain constraints: An application on Borsa Istanbul 30 Index. TESAM Akademi Dergisi-Turkish Journal of TESAM Academy, 7(1), 115-141.
Gupta, A.K., Chang, F.C. & Huang, W.J. (2003). Some skew-symmetric models. Random Operators Stochastic Equations, 10, 133-140.
Huang, X. (2008). Mean- Entropy Models for Fuzzy Portfolio Selection. IEEE Transactions on Fuzzy Systems, 16(21): 170-176.
Jana, P., Roy, T.K. & Mazumder, S.K. (2009). Multi-objective possibility model for portfolio selection with transaction cost. Journal of Computational and Applied Mathematics, 228, 188-196.
Kasenbacher, G., Lee, J. & Euchukanonchai, K. (2019). Mean-variance vs. mean-absolute deviation: A performance comparison of portfolio optimization models. University of British Columbia, Vancouver BC, Canada, Thesis.
Khandan, A. (2023). Comparing the performance of Median or Mean and other risk indicators in Portfolio Optimization. Quarterly Journal of Quantitative Economics20(1), 99-138.
Konno, H. & Suzuki, K.I. (1992). A fast algorithm for solving large scale mean-variance models by compact factorization of covariance matrices. Journal of the operations research society of Japan, 35 (1), 93-104.
Konno, H. & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Application to Tokyo Stock Market. Management Science, 37, 519-531.
Lam, W.S., Lam, W.H. & Jaaman, S.H. (2021). Portfolio Optimization with a Mean- Absolute Deviation- Entropy Multi- Objective Model. Entropy, 23(10), 1266.
Li, B. & Zhang, R. (2021). A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification. Chaos Solitons Fractals, 146: 1-6.
Li, D. (2016). Optimal Dynamic Portfolio Selection: Multiperiod Meanvariance Formulation. Mathematical Finance, 10(5), 387-406.
Lu, S., Zhang, N. & Jia, L. (2021). A multiobjective multiperiod mean-semientropy-skewness model for uncertain portfolio selection. Applied Intelligence, 51, 5233-5258.
Markowitz, H. (1952). Portfolio Selection, Journal of Finance, 7, 77-91.
Nabizadeh, A. & Behzad, A. (2018). Higher Moments Portfolio Optimization Considering Entropy based on Polynomial Idealistic Programming. Financial Research Journal, 20(2), 191-208. (in Persian)
Philippatos G. & Wilson, C. (1972). Entropy, market risk, and the selection of efficient portfolios. Applied Economics, 4(3), 209-220.
Pindoriya, N. (2014). Multi-Objective Mean- variance- skewness Model for Generation Portfolio Allocation in Electricity Markets. Electric Power Systems Research, 80(10): 1314-1321.
Raei, R., Bajelan, S., Habibi, M., & Nikahd, A. (2017). Optimization of Multi-Objective Portfolios Based on Mean, Variance, Entropy and Particle Swarm Algorithm. Quarterly Journal of Risk Modeling and Financial Engineering, 2(3), 362-379. (in Persian)
Rai, R. & Poyanfar, A. (2018). Advanced investment management. Tehran: Publications of the Organization for the Study and Compilation of Humanities Books in Universities (Samt). (in Persian)
Samuelson, P.A. (1970). The fundamental approximation theorem of portfolio analysis in terms of means variances and higher moments. The Review of Economic Studies, 37(4), 537- 542.
Shannon, C.E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423.
Simkowitz, M.A. & Beedles, W.L. (1978). Diversification in a three-moment world. Journal of Financial and Quantitative Analysis, 13(5), 927-941.
Sun, Y.F., Aw, G., Loxton, R. & Teo, K.L. (2017). Chance-constrained optimization for pension fund portfolios in the presence of default risk. European Journal of Operational Research, 256(1), 205-214.
Tayi, G.K. & Leonard, P.A. (1988). Bank balance- sheet management: An alternative multiobjective model. Journal of the Operational Research Society, 39(4), 401-410.
Viole, F. & Nawrocki, D. (2016). Predicting risk/return performance using upper partial moment/lower partial moment metrics. Journal of Mathematical Finance, 6(5), 900-920.
Zhang, W.G., Liu, Y.j. & Xu, W.J. (2012). A Possibility Mean-Semi Variance-Entropy Model for Multi- Period Portfolio Selection with Transaction Costs. European Journal of Operational Research, 222(5), 341-349.
Zhang, X.L. (2009). Using Genetic Algorithm to Solve a New Multi-period Stochastic Optimization Model. Journal of Computational and Applied Mathematics, 231(13), 114-123.