مسئله مکان‏یابی و تخصیص هاب با قابلیت حمل‌ونقل مستقیم با درنظرگرفتن تراکم و دیرکرد در هاب

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده علوم اقتصادی و اداری، دانشگاه فردوسی مشهد، مشهد، ایران.

2 دانشیار، گروه مدیریت صنعتی، دانشکده علوم اقتصادی و اداری، دانشگاه فردوسی مشهد، مشهد، ایران.

10.22059/imj.2022.343575.1007947

چکیده

هدف: این مقاله به‌دنبال یافتن تعداد بهینه هاب‌ها و مکان‏یابی آن‌هاست؛ به‌طوری که بتواند زمان آماده‌سازی و تراکم در ها‌ب‌ها و هزینه‌ها را در حداقل مقدار خود نگه دارد. همچنین این مطالعه زمان دیرکرد را برای شرایطی در نظر می‌گیرد که نیاز مشتری در زمان تعیین‌شده پاسخ داده نشود که می‌تواند به واقعی‌تر شدن شرایط مسئله کمک کند. از آنجایی که افزایش تراکم، باعث می‌شود که کالاها دیر به‌دست متقاضی برسد، در این مقاله برای اولین‌بار، زمان دیرکرد و تراکم با هم، برای مسئله بهینه‌سازی هاب‌های چندگانه با حمل‌ونقل مستقیم حل شده و نتایج آن با تخصیص تکی و چندگانه مقایسه شده است.
روش: این مقاله با استفاده از مدل ریاضی، به حل مسئله بهینه‌سازی مکان‏یابی و تخصیص هاب‌ می‌پردازد. نرم‌افزار گمز برای یافتن تعداد بهینه هاب‌ها و نیز مکان‏یابی به‌کار گرفته شده است. همچنین، از روش لکسیکوگراف برای تبدیل توابع هدف به یک تابع هدف استفاده شده است.
یافته‌ها: این مدل روی داده‌های پُست استرالیا، برای سه مدل‌ تخصیص آزمون شد. سه حالت تخصیص با یکدیگر از نظر هزینه و زمان مقایسه شدند. به‌علاوه، مدل پیشنهادی این پژوهش توانست مسئله را برای 100 گره در هر سه مدل تخصیص به‌طور دقیق حل کند. همچنین تعداد هاب‌ها با توجه به ظرفیت و تراکم هاب‌ها و زمان دیرکرد مشخص شد.
نتیجه‌گیری:  نتایج حاکی از آن است که استفاده از مدل تخصیص چندگانه با حمل‌ونقل مستقیم، قادر است هزینه‌های کل حمل‌ونقل و زمان آماده‌سازی را کاهش دهد و بیشترین هزینه‌ و زمان حمل‌ونقل را تخصیص تکی تحمیل می‌کند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Location-allocating Hub Problem with Direct Transportation Capability Considering Congestion and Tardiness Time in Hubs

نویسندگان [English]

  • Pardis Roozkhosh 1
  • Nasser Motahari Farimani 2
1 Ph.D. Candidate, Department of Industrial Management, Faculty of Economics and Administrative sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Associate Prof., Department of Industrial Management, Faculty of Economics and Administrative sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Objective: This paper seeks to find the optimal number of hubs and their location to keep the preparation time and congestion in the hubs and costs at a minimum. Also, this study considers the tardiness time for the conditions that the customer's need is not answered in the specified time, which can help to make the problem conditions more realistic. Therefore, in this study, the scheduled time and the real-time system are considered. This paper considers the tardiness and congestion time for hub optimization problems with single, multiple, and multiple direct transport allocations. The decision variables in this model determine the number of hubs, the capacity of the hubs, and their location. Congestion and tardiness also affect service time, especially if the capacity and cost of hubs are limited.
Methods: This paper uses a mathematical model to solve the hub problem of optimizing the allocation – location of single, multiple, and multiple with direct transportation. GAMS software is used to find the optimal number of hubs and locations as two objective functions are optimized. The first objective function includes transportation costs, hub setup, and tardiness costs, and the second one consists of the handling time in the hubs and the congestion inside the hubs. The sensitive analysis is investigated for the service time based on the congestion and tardiness time.
Results: This model is tested on AP (Australian Post) data for single, multiple, and multiple with direct shipping allocation models. This study also solves the exact model for 100 nodes allocated to all three models. The hubs' capacity, congestion, and tardiness determine the number of hubs. In this paper, hubs are considered small, medium, and large. Congestion levels are also considered changeable. In addition, a comparison is made between single and multiple allocations concerning cost and capacity limitation to investigate service time. The findings indicate that a hub with limited cost and capacity needs more service time. The lexicography method is also used to convert objective functions into one function.
Conclusion: The more the number of hubs increases, the total costs, including the transportation and hub establishment costs will also increase. Therefore, considering the transportation costs and the establishment of the hub, it can be said that single and multiple allocations can be used in some situations. However, multiple allocations with direct transport have the lowest transportation costs because goods based on the costs are transported through the non-hub and hub nodes. In general, the results indicate that using the multiple allocation model with direct transport can reduce the total transport cost, and a single allocation has the highest transport costs. This paper is helpful for managers and business owners who first want to identify points for building their product or service warehouse. Secondly, they want to have the most optimal type of allocation for transportation from different cities.

کلیدواژه‌ها [English]

  • Allocation
  • Location
  • Tardiness time
  • Congestion
  • Handling time
  • Hub
بهرامی، فرزاد؛ صفری، حسین؛ توکلی مقدم، رضا و مدرس یزدی، محمد (1396). مسئله مکان‏یابی ـ مسیریابی هاب زمینی در محدوده نامتراکم وسیع. مدیریت صنعتی، 9(1)، 59 – 78.
کاظمی، محبوبه؛ محمدی زنجیرانی، داریوش و  اسماعیلیان، مجید (1400). مدل چندهدفه مکان‌یابی مراکز بارانداز عبوری، زمان‏بندی و مسیریابی هم‏زمان وسایل نقلیه، تحت بخش‌بندی تقاضا برای اقلام فاسدشدنی. مدیریت صنعتی، 13(4)، 606-633.
مهرگان، محمدرضا؛ جعفرنژاد، احمد؛ محمدی، میلاد  (1397). ارائه مدل چندهدفه برای حمل ونقل زمینی مواد خطرناک در شبکه هاب (مطالعه موردی: شرکت ملی پخش فراورده های نفتی). مدیریت صنعتی، 10(2)، 221-246.
 
References
Alumur, S. A., Nickel, S., Rohrbeck, B., & Saldanha-da-Gama, F. (2018).  Modeling congestion and service time in hub location problems. Applied Mathematical Modelling, 55, 13-32.
Alumur, S., & Kara, B. (2008). Network hub location problems: the state of the art. European Journal of Operational Research, 190, 1-21.
Anderluh, A., Hemmelmayr, V. C. & Rüdiger, D. (2020). Analytichierarchy process for city hub location selection- The Viennese case. Transportation Research Procedia, 46, 77-84.
Bafandegan Emroozi, V., Roozkhosh, P., Modares, A., & Roozkhosh, F. (2023). Selecting Green Suppliers by Considering the Internet of Things and CMCDM Approach. Process Integration and Optimization for Sustainability, 1-23.
Bahrami, F., Safari, H., Tavakkoli-Moghaddam, R., & Yazdi, M. M. (2017). Road Hub Location-Routing Issue in a Sparse and Distant Area. Industrial Management Journal,9(1), 59-78. doi:20.1001.1.20085885.1396.9.1.4.5 (in Persian)
Bayram, V., Yıldız, B., & Farham, M. S. (2023). Hub Network Design Problem with Capacity, Congestion and Stochastic Demand Considerations. Transportation Science.
Bazari, S., Pooya, A., Soleimani Fard, O., & Roozkhosh, P. (2023). Modeling and solving the problem of scheduling university exams in terms of new constraints on the conflicts of professors' exams and the concurrence of exams with common questions. OPSEARCH, 60, 877–915. 
Beasley, J.  (1990). OR Library: Hub location. http://people.brunel.ac.uk/∼mastjjb/ jeb/orlib/phubinfo.html
Campbell, J. F. (1992). Location and allocation for distribution systems with transshipments and transportion economies of scale. Annals of operations research, 40.
Campbell, J. F. (1994). A survey of network hub location. Studies in Locational Analysis Issue, 6, 31-49.
Campbell, J., Ernst, A., & Krishnamoorthy, M. (2002). Hub location problems.
Contreras, I., Fernández, E., & Marín, A. (2010). The tree of hubs location problem. European Journal of Operational Research, 202(2), 390-400.
Demir, İ., Kiraz, B., & Ergin, F. C. (2022). Experimental evaluation of meta-heuristics for multi-objective capacitated multiple allocation hub location problem. Engineering Science and Technology, an International Journal.  doi:10.1016/j.jestch.2021.06.012
DMO, S.  (2018). Statista Digital Market Outlook Market Report. Hamburg: Statista.
Donaldson, H., Johnson, E. L., Ratliff, H. D., & Zhang, M.  (1999). Schedule driven cross-docking networks. Working paper.
Ebery, J. (2001). Solving large single allocation p-hub problems with two or three hubs. European journal of operational research, 128(2), 447-458.
Ebrahimi, Z. A., Hossini-Nasab, H., mehrjerdi, Y. z., & Zahmatkesh, A. (2015). Multi-Period Hub Set Covering Problems with Flexible Radius: a ModiÞed Genetic Solution. Applied Mathematical Modelling. doi:10.1016/j.apm.2015.09.064
Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location science, 4(3), 139-154.
Ernst, A. T., & Krishnamoorthy, M. (1999). Solution algorithms for the capacitated single allocation hub location problem. Annals of operations Research, 86(0), 141-159.
Esmaeili, M., & Sedehzade, S. (2020). Designing a hub location and pricing network in a competitive environment. Journal of Industrial & Management Optimization, 16(2).
Fernández, E., & Sgalambro, A. (2020). On carriers collaboration in hub location problems. European Journal of Operational Research, 283(2), 476-490.
Garber, N., & Hoel, L. (2002). Traffic and Highway Engineering. 3rd Edition, Brooks/Cole Thompson, Learning, Pacific Grove.
Ghaffarinasab, N., & Motallebzadeh, A. (2021). Modeling and solving the uncapacitated r-allocation p-hub median problem under congestion. Computational and Applied Mathematics, 40, 1-28.
glua, C.K., Serarslanb, M. N., & Topcu, Y. (2018). Particle Swarm Optimization for UncapacitatedMultiple Allocation Hub Location Problem underCongestion. Expert Systems With Applications. doi:https://doi.org/10.1016/j.eswa.2018.10.019
Goldman, A. J. (1969). Optimal locations for centers in a network. Transportation Science, 3(4), 352-360.
Hasanzadeh, H., Bashiri, M., & Amiri, A. (2018). A new approach to optimize a hub covering location problem with a queue estimation component using genetic programming. Soft Computing, 22, 949-961.
Hejazi, T. H., & Roozkhosh, P. (2019). Partial inspection problem with double sampling designs in multi-stage systems considering cost uncertainty. Journal of Industrial Engineering and Management Studies, 6(1), 1-17.
Hoff, A., Peiro, J., Corberan, A., & Marti, R. (2017). Heuristics for the capacitated modular hub location problem. Computers & Operations Research, 86, 94-109.
Hu, Q. M., Hu, S., Wang, J., & Li, X. (2021). Stochastic single allocation hub location problems with balanced utilization of hub capacities. Transportation Research Part B: Methodological, 153, 204-227.
Ilić, A., Urošević, D., Brimberg, J., & Mladenović, N. (2010). A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem. Eur. J. Oper. Res, 206(2), 289–300.
Kara, B. Y. (1999). Modeling and analysis of issues in hub location problem. Doctoral dissertation, Bilkent Universitesi (Turkey).
Kazemi, M., Mohamadi Zanjirani, D., & Esmaeilian, M. (2022). The Multi-Objective Locating Model for Cross-Docking Centers and Vehicle Routing Scheduling With Split Demands for Perishable Products. Industrial Management Journal, 13(4), 606-633. doi:10.22059/imj.2022.333499.1007883 (in Persian)
Lozkins, A., Krasilnikov, M., & Bure, V. (2019). Robust uncapacitated multiple allocation hub location problem under demand uncertainty: minimization of cost deviations. Journal of Industrial Engineering International, 15, 199-207.
Mehregan, M., Jafarnezhad, A., & Mohammadi, M. (2018). Proposing a Multi-objective Model for Ground Transportation of Hazardous Materials in the Hub Network (Case Study: National Iranian Oil Products Distribution Company). Industrial Management Journal, 10(2), 201-220.doi:20.1001.1.20085885.1397.10.2.3.3 (in Persian)
Meraklı, M., & Yaman, H. (2017). A capacitated hub location problem under hose demand uncertainty. Computers & Operations Research, 88, 58-70.
Modares, A., Farimani, N. M., & Emroozi, V. B. (2023a). A new model to design the suppliers portfolio in newsvendor problem based on product reliability. Journal of Industrial and Management optimization, 19(6), 4112-4151. doi:10.3934/jimo.2022124
Modares, A., Farimani, N. M., & Emroozi, V. B. (2023b). A vendor-managed inventory model based on optimal retailers selection and reliability of supply chain. Journal of Industrial and Management Optimization, 19(5), 3075-3106.
Modares, A., Kazemi, M., Emroozi, V. B., & Roozkhosh, P. (2023). A new supply chain design to solve supplier selection based on internet of things and delivery reliability. Journal of Industrial and Management Optimization, 19(11), 7993-8028.
Modares, A., Motahari, N., & Bafandegan Emroozi, V. (2022). Developing a Newsvendor Model based on the Relative Competence of Suppliers and Probable Group Decision-making. Industrial Management Journal, 14(1), 115-142. doi:10.22059/IMJ.2022.331988.1007872 (in Persian)
Monemi, R. N., Gelareh, S., Nagih, A., & Jones, D. (2020). Bi-objective load balancingmultiple allocation hub location:a compromise programming approach. Annals of Operations Research. doi:https://doi.org/10.1007/s10479-019-03421-w
Motahari Farimani, N., Ghanbarzadeh, F., & Modares, A. (2022). A New Approach for Pricing Based on Passengers’ Satisfaction. Transportation Journal,61(2), 123-150.
Nickel, S., Schöbel, A., & Sonneborn, T. (2001). Hub location problems in urban traffic networks. Mathematical methods on optimization in transportation systems, 95-107.
O'kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European journal of operational research, 32(3), 393-404.
O'Kelly, M. E. (1992). Hub facility location with fixed costs. Papers in Regional Science, 71(3), 293-306.
O'Kelly, M. E., & Miller, H. J. (1994). The hub network design problem: a review and synthesis. Journal of Transport Geography, 2(1), 31-40.
Peker, M., Kara, B. Y., Campbell, J. F., & Alumur, S. A. (2016). Spatial analysis of single allocation hub location problems. Networks and Spatial Economics, 16, 1075-1101.
Rajabi, S., Roozkhosh, P., & Farimani, N. M. (2022). MLP-based Learnable Window Size for Bitcoin price prediction. Applied Soft Computing, 129, 109584.
Roozkhosh, P., & Motahari Farimani, N. (2022). Designing a new model for the hub location-allocation problem with considering tardiness time and cost uncertainty. International Journal of Management Science and Engineering Management, 1-15. doi:10.1080/17509653.2022.2089261
Roozkhosh, P., Pooya, A., & Agarwal, R. (2022). Blockchain acceptance rate prediction in the resilient supply chain with hybrid system dynamics and machine learning approach. Operations Management Research, 1-21.
Rostami, B., Kämmerling, N., Buchheim, C., & Clausen, U. (2018). Reliable single allocation hub location problem under hub breakdowns. Computers & Operations Research, 96, 15-29.
Shahin, M., Jabalameli PhD, M. S., & Jabbarzadeh PhD, A. (2017). Multi-modal and multi-product hierarchical hub location under uncertainty. Industrial Management Journal, 8(4), 625-658. doi:10.22059/imj.2017.59971 (in Persian)
Skorin-Kapov, D., Skorin-Kapov, J., & O'Kelly, M. (1996). Tight linear programming relaxations of uncapacitated p-hub median problems. European journal of operational research, 94(3), 582-593.
Sohn, J., & Park, S. (1998). Efficient solution procedure and reduced size formulations for p-hub location problems. European Journal of Operational Research, 108(1), 118-126.
Wandelt, S., Dai, W., Zhang, J., Zhao, Q., & Sun, X. (2021). An efficient and scalable approach to hub location problems based on contraction. Computers & Industrial Engineering, 151, 106955.
Wu, Y., Qureshi, A. G., & Yamada, T. (2022). Adaptive large neighborhood decomposition search algorithm for multi-allocation hub location routing problem. European Journal of Operational Research, 302(3), 1113-1127.