رضایی فهیمه, حسینی راحیل, مزینانی مهدی، 1398، ارایه مدل طبقه بندی بر اساس سیستم استنتاج فازی و الگوریتم ژنتیک جهت تشخیص اختلال خواندن در دانش آموزان مقطع راهنمایی، فناوری آموزش (فناوری و آموزش), دوره 13, شماره 3 ; از صفحه 593 تا صفحه 602.
کوپر ویلیام, سیفورد لورنس، تن کورا تحلیل پوششی دادهها، مدل ها و کاربردها. 1392, تهران: دانشگاه صنعتی امیرکبیر.
References
Aldamak, A., & Zolfaghari, S. (2017). Review of efficiency ranking methods in data envelopment analysis. Measurement, 106, 161-172.
An, Q., Meng, F., & Xiong, B. (2018). Interval cross efficiency for fully ranking decision making units using DEA/AHP approach. Annals of Operations Research, 271(2), 297-317.
Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management science, 39(10), 1261-1264.
Angiz, M. Z., Mustafa, A., & Kamali, M. J. (2013). Cross-ranking of decision making units in data envelopment analysis. Applied Mathematical Modelling, 37(1-2), 398-405.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
Cooper William, Seiford Lawrence, Tone Kaoru, (2013), Data envelopment analysis: a comprehensive text with modes، applications، references and DEA-Solver software.
dos Santos Rubem, A.P., J.C.C.S. de Mello, and L.A. Meza, A goal programming approach to solve the multiple criteria DEA model. European Journal of Operational Research, 2017. 260(1): p. 134-139.
Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2015). A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Computers & Industrial Engineering, 79, 103-114.
Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the operational research society, 45(5), 567-578.
Friedman, L., & Sinuany-Stern, Z. (1997). Scaling units via the canonical correlation analysis in the DEA context. European Journal of Operational Research, 100(3), 629-637.
Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a perceptual evaluation method. Fuzzy sets and systems, 119(1), 149-160.
Hashimoto, A., & Wu, D. A. (2004). A DEA-compromise programming model for comprehensive ranking. Journal of the Operations Research Society of Japan, 47(2), 73-81.
Hatami-Marbini, A., Agrell, P. J., Tavana, M., & Khoshnevis, P. (2017). A flexible cross-efficiency fuzzy data envelopment analysis model for sustainable sourcing. Journal of Cleaner Production, 142, 2761-2779.
Hatami-Marbini, A., Saati, S., & Tavana, M. (2010). An ideal-seeking fuzzy data envelopment analysis framework. Applied Soft Computing, 10(4), 1062-1070.
Hatami-Marbini, A., Tavana, M., Agrell, P. J., Lotfi, F. H., & Beigi, Z. G. (2015). A common-weights DEA model for centralized resource reduction and target setting. Computers & Industrial Engineering, 79, 195-203.
Jablonsky, J. (2007). Measuring the efficiency of production units by AHP models. Mathematical and Computer Modelling, 46(7-8), 1091-1098.
Jahanshahloo, G. R., Junior, H. V., Lotfi, F. H., & Akbarian, D. (2007). A new DEA ranking system based on changing the reference set. European Journal of Operational Research, 181(1), 331-337.
Jahanshahloo, G. R., Khodabakhshi, M., Lotfi, F. H., & Goudarzi, M. M. (2011). A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS approach and its extension to the interval case. Mathematical and Computer Modelling, 53(9-10), 1946-1955.
Kao, C., & Hung, H. T. (2005). Data envelopment analysis with common weights: the compromise solution approach. Journal of the Operational Research Society, 56(10), 1196-1203.
Kuah, C. T., Wong, K. Y., & Behrouzi, F. (2010, May). A review on data envelopment analysis (DEA). In 2010 Fourth Asia International Conference On Mathematical/Analytical Modelling And Computer Simulation (pp. 168-173). IEEE.
Liu, F. H. F., & Peng, H. H. (2008). Ranking of units on the DEA frontier with common weights. Computers & Operations Research, 35(5), 1624-1637.
Liu, S. T. (2012, November). Efficiency ranking in fuzzy two-stage DEA: A mathematical programming approach. In The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems (pp. 1740-1745). IEEE.
Liu, S. T. (2014). Fuzzy efficiency ranking in fuzzy two-stage data envelopment analysis. Optimization Letters, 8(2), 633-652.
Liu, S. T. (2018). A DEA ranking method based on cross-efficiency intervals and signal-to-noise ratio. Annals of Operations Research, 261(1-2), 207-232.
Liu, S. T., & Lee, Y. C. (2019). Fuzzy measures for fuzzy cross efficiency in data envelopment analysis. Annals of Operations Research, 1-30.
Lovell, C. K., & Rouse, A. P. B. (2003). Equivalent standard DEA models to provide super-efficiency scores. Journal of the Operational Research Society, 54(1), 101-108.
Lu, W. M., & Lo, S. F. (2009). An interactive benchmark model ranking performers—application to financial holding companies. Mathematical and Computer Modelling, 49(1-2), 172-179.
Mustafa, A., & Emrouznejad, A. (2010). Ranking efficient decision-making units in data envelopment analysis using fuzzy concept. Computers & Industrial Engineering, 59(4), 712-719.
Rezaee Fahimeh, Hosseini Rahil, Mazinani Mahdi, (2019), A New Classification Model Fuzzy-Genetic Algorithm for Detection of learning disability of Dyslexia in Secondary School Students, Journals Management Sysytem, Volume 13, Issue 2, Pages 593-602.
Saati, S. M., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optimization and Decision Making, 1(3), 255-267.
Saati, S., Hatami-Marbini, A., Agrell, P. J., & Tavana, M. (2012). A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 8(3), 623-637.
Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New Directions for Program Evaluation, 1986(32), 73-105.
Si, Q., & Ma, Z. (2019). DEA cross-efficiency ranking method based on grey correlation degree and relative entropy. Entropy, 21(10), 966.
Si, Q., & Ma, Z. (2019). DEA cross-efficiency ranking method based on grey correlation degree and relative entropy. Entropy, 21(10), 966.
Sinuany‐Stern, Z., Mehrez, A., & Hadad, Y. (2000). An AHP/DEA methodology for ranking decision making units. International Transactions in Operational Research, 7(2), 109-124.
Torgersen, A. M., Førsund, F. R., & Kittelsen, S. A. (1996). Slack-adjusted efficiency measures and ranking of efficient units. Journal of Productivity Analysis, 7(4), 379-398.
Wen, M., & Li, H. (2009). Fuzzy data envelopment analysis (DEA): Model and ranking method. Journal of Computational and Applied Mathematics, 223(2), 872-878.
Wen, M., You, C., & Kang, R. (2010). A new ranking method to fuzzy data envelopment analysis. Computers & Mathematics with Applications, 59(11), 3398-3404.
Wen, M., Zhang, Q., Kang, R., & Yang, Y. (2017). Some new ranking criteria in data envelopment analysis under uncertain environment. Computers & Industrial Engineering, 110, 498-504.
Wu, D. D. (2009). Performance evaluation: an integrated method using data envelopment analysis and fuzzy preference relations. European Journal of Operational Research, 194(1), 227-235.
Zhu, J. (1996). Robustness of the efficient DMUs in data envelopment analysis. European Journal of operational research, 90(3), 451-460.
Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media.