مدل‌سازی ریاضی شبکه زنجیره تأمین پایدار در وضعیت عدم قطعیت و حل آن با استفاده از الگوریتم‌های فراابتکاری

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، گروه مدیریت صنعتی و مالی، دانشکده مدیریت و حسابداری، پردیس فارابی دانشگاه تهران، قم، ایران.

2 استادیار، گروه مدیریت صنعتی، دانشکده علوم اجتماعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران.

3 دانشجوی کارشناسی ارشد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، پردیس فارابی دانشگاه تهران، قم، ایران.

چکیده

هدف: در سال‌های اخیر نگرانی‌های جهانی در خصوص مسائل زیست‌محیطی و اجتماعی، باعث شده است که مصرف‌کنندگان، سازمان‌های دولتی، شرکت‌ها و دانشگاه‌ها فعال‌تر شوند و بیش از پیش به طراحی شبکه زنجیره تأمین در جایگاه اساسی‌ترین بخش زنجیره تأمین پایدار توجه کنند. هدف اصلی این مقاله، ارائه مدل ریاضی شبکه زنجیره تأمین برای شرکت شیشه‌سازی همدان با در نظر گرفتن ابعاد پایداری است.
روش: در این مقاله برای به حداقل‌رساندن آثار زیست‌محیطی و حداکثر‎سازی آثار اجتماعی و سود اقتصادی، مدل برنامه‌ریزی عدد صحیح مختلط چندهدفه فازی، به‌منظور طراحی زنجیره تأمین پایدار حلقه بسته در وضعیت عدم قطعیت ارائه شده است. در این مدل، هم محدودیت‌ها و هم پارامتر‎های مسئله از نوع فازی است که با استفاده از روش خیمنز قطعی شده و برای حل مدل، از الگوریتم‌های فراابتکاری NSGA-II و MOPSO استفاده شده است.
یافته‌ها: مدل برنامه‌ریزی پیشنهادی با دو الگوریتم ژنتیک چندهدفه و ازدحام ذرات چندهدفه حل شد و مقایسه‌های لازم بین نتایج صورت گرفت و در نهایت، جواب‌های پارتو مشخص شد. با توجه به نتایج، از لحاظ معیار زمان، الگوریتم NSGA-II بر MOPSO و از نظر معیار MID الگوریتم MOPSO بر NSGA-II برتری دارد و در باقی معیارها برتری معناداری نسبت به هم ندارند.
نتیجه‌گیری: بر اساس نتایج، ملاحظات هم‌زمان ابعاد اقتصادی، زیست‌محیطی و اجتماعی و عدم قطعیت در برخی پارامترها همچون تقاضا و میزان برگشتی، به بهبود عملکرد زنجیره تأمین از نظر سودآوری و پاسخ‌گویی به نیازهای مشتریان منجر می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Mathematical Modeling of Sustainable Supply Chain Networks under Uncertainty and Solving It Using Metaheuristic Algorithms

نویسندگان [English]

  • Mohammad Reza Fathi 1
  • Mahdi Nasrollahi 2
  • Ali Zamanian 3
1 Assistant Prof., Department of Industrial and Financial Management, Faculty of Management and Accounting, Farabi Campus, University of Tehran, Qom, Iran.
2 Department of Industrial Management, Faculty of Social Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran.
3 M.S. Student, Department of Industrial Management, Faculty of Management and Accounting, Farabi Campus, University of Tehran, Qom, Iran.
چکیده [English]

Objective: In recent years, global concerns about environmental and social issues have made consumers, government organizations, companies and universities more active, and their focus has increasingly been on the design of the supply chain network as the most important part of the supply chain. The main objective of this paper is to present a supply chain modeling model for Hamadan Glass Manufacturing Company considering the dimensions of sustainability.
Methods: In this paper, a Fuzzy Multi-objective Mixed Integral Programming is presented to design a closed loop supply chain under uncertainty conditions in order to minimize environmental impacts and maximize social impacts and economic benefits. In this model, both the constraints and the parameters of the problem are fuzzy, which is determined by the Jimenez method, and the algorithms of NSGA-II and MOPSO have been used to solve the model.
Results: The proposed model was solved with two multi-objective genetic algorithms and multi-objective particle swarm optimization, and the necessary comparisons were made between the results. Finally, Pareto's solutions were determined. According to the results, the two algorithms differ in the time criterion that the NSGA-II is superior to MOPSO. Also, there are two different algorithms in the MID standard that MOPSO excels over NSGA-II and does not have any significant superiority over the remaining criteria.
Conclusion: Based on the results of the research, simultaneous consideration of economic, environmental and social dimensions and uncertainty in some parameters such as demand and returns lead to improved supply chain performance in terms of profitability and customer satisfaction.

کلیدواژه‌ها [English]

  • Sustainable Supply Chain
  • Meta-heuristic Algorithms
  • Mixed-Integer Linear Programming
ضرابی، اصغر؛ شاهیوندی، احمد (1389). تحلیلی بر پراکندگی شاخص‌های توسعه اقتصادی در استان‌های ایران. جغرافیا و برنامهریزی محیطی، 21(2)، 17-32.
عمرانی، قاسم علی؛ منوری، سید مسعود؛ جوزی، سید علی؛ زمانی، ندا (1388). مدیریت بازیافت شیشه در شهر تهران. فصلنامه علوم و تکنولوژی محیط زیست، 11(4)، 41-50.
غضنفری، مهدی؛ فتح الله، مهدی (1396). نگرشی جامع بر مدیریت زنجیره تأمین. تهران: دانشگاه علم و صنعت ایران.
فلاح لاجیمی، حمیدرضا؛ جعفرنژاد، احمد؛ مهرگان، محمدرضا؛ الفت، لعیا (1394). پیکره‎بندی شبکه زنجیره تأمین یکپارچه راهبردی تصادفی. مدیریت صنعتی، 7(1) ، 83-105.
محمدی، امیرسالار؛ عالم تبریز، اکبر؛ پیشوایی، میرسامان (1397). طراحی شبکه زنجیره ‏تأمین سبز حلقه ‏بسته همراه با تصمیم‌های مالی در شرایط عدم قطعیت. مدیریت صنعتی، 10(1)، 61-84.
 
References
Aras, N., Aksen, D. (2008). Locating collection centers for distance-and incentive-dependent returns. International Journal of Production Economics, 111(2), 316-333.
Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299–312.
Cambero, C., Sowlati, T., Pavel, M. (2016). Economic and life cycle environmental optimization of forest-based biorefinery supply chains for bioenergy and biofuel production. chemical engineering research and design, 107, 218–235.
Chaabane, A., Ramudhin, A., Paquet, M. (2012). Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics, 135(1), 37-49.
Dai, Z., Zheng, Z. (2015). Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: A fuzzy and chance-constrained programming model. Computers & Industrial Engineering, 88, 444–457.
Dehghanian, F., & Mansour, S. (2009). Designing sustainable recovery network of end-of-life products using genetic algorithm, Resources, Conservation and Recycling, 53(10), 559-570.
Devika, K., Jafarian, A., Nourbakhsh, V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. European Journal of Operational Research, 235, 594–615.
Elhedhli, S., Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport and Environment, 17 (5), 370-379.
Fallah Lajimi, H.R., Jafarnejad, A., Mehrgan, M.R., Olfat, L. (2016). Configuring integrated supply chain network stochastic strategic. Industrial Management Journal, 7(1), 83-105. (in Persian)
Fattahi, M., Govindan, K., Keyvanshokooh, E. (2018). A multi-stage stochastic program for supply chain network redesign problem with price-dependent uncertain demands. Computers and Operations Research, 110, 314-332.
Feito Cespon, M., Sarache, W., Jimenez, F. P., Cespon Castro, R. (2017). Redesign of a sustainable reverse supply chain under uncertainty: A case study. Journal of Cleaner Production, 151, 206-217.
Fleischmann, M., Bloemhof-Ruwaard, J. M., Beullens, P., Dekker, R. (2004). Reverse Logistics Network Design. In Dekker R., Fleischmann M., Inderfurth K., Van Wassenhove L. N., Reverse Logistics: Quantities Models for closed-loop supply chains, Springer, Berlin, 65-94.
Georgiadis, P., Besiou, M. (2010). Environmental and economic sustainability of WEEE closed-loop supply chains with recycling: a system dynamics analysis. The International Journal of Advanced Manufacturing Technology, 47(5-8), 475-493.
Ghazanfari, M, Fathollah, M. (2017). Comprehensive Approach to Supply Chain Management. Iran University of Science and Technology press. (in Persian)
Govidinden, K., Khodaverdi, R., Jafarian, A. (2013). A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach, journal of cleaner production, 47, 345-354.
Hasanzaheh Amin, S. H., Baki, F. (2017). A facility location model for global closed-loop supply chain network design. Applied Mathematical Modeling, 41, 316–330.
Jabbarzadeh, A., Haughton, M., Khosrojerdi, A. (2018). Closed-loop supply chain network design under disruption risks: A robust approach with real world application, Computers & Industrial Engineering, 116, 178–191.
Jimenez, M., Arenas, M., & Bilbao, A. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609.
Keyvanshokooh, E., Ryan, S. M., Kabir, E. (2016). Hybrid robust and stochastic optimization for closed loop supply chain network design using accelerated Benders decomposition, European Journal of Operational Research, 249, 76–92.
Klibi, W., Martel, A., Guitouni, A. (2010). The design of robust value-creating supply chain networks: A critical review. European Journal of Operational Research, 203, 283-293.
Min, H., Ko, H. J. (2008). The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers, International Journal of Production Economics, 113(1), 176-192.
Mohammadi, A.S., Alemtabriz, A., Pishvaee, M. (2018). Designing Green Closed-loop Supply Chain Network with Financial Decisions under Uncertainty. Industrial Management Journal, 10(1), 61-84. (in Persian)
Omrani, GH., Monavari, S.M., Jozi, S.A., Zamani, N. (2009). Glass recycling management in Tehran city. Journal of Environmental Science and Technology, 11(4), 41-50.
(in Persian)
Pishvaee, M.S., Jolai. F., Razmi, J. (2010). Stochastic optimization model for integrated forward/reverse logistics network design. Journal of Manufacturing Systems, 28(4), 107-114.
Pishvaee, M.S., Kianfar, K., Karimi, B. (2010). Reverse logistics network design using simulated annealing. International journal of Advanced Manufacturing Technology, 47, 269-281.
Pishvaee, M.S., Torabi, S.A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets and Systems, 161, 2668 –2683.
Pishvaee, M.S., Torabi, S.A., Razmi, J. (2012). Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Computers & Industrial Engineering, 62 (2), 624-632.
Seuring, S., Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699-1710.
Shaw, K., Shankar, R., Yadav, S. S., & Thakur, L. S. (2013). Modeling a low-carbon garment supply chain. Production Planning & Control, 24(8-9), 851-865.‏
Soleimani, H., Govindan, K., Saghafi, H., Jafari, H. (2017). Fuzzy multi-objective sustainable and green closed-loop supply chain network design. Computers & Industrial Engineering, 109, 191–203.
Tang, C.S., Zhou, S. (2012). Research advances in environmentally and socially sustainable operations. European Journal of Operational Research, 223, 585–594.
Tsiakis, P., Papageorgiou, L.G. (2008). Optimal production allocation and distribution supply chain network. International Journal of Production Economics, 111, 468-483.
Wang, M., Wang, J., Tan, J., Sun, J., Mou, J. (2011). Optimization of Ethanol Fermentation from Sweet Sorghum Juice Using Response Surface Methodology, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects, 33 (12), 1139-1146.
Zarabi, A., Shahiwandi, A. (2010). An Analysis of the Dispersion of Economic Development Indicators in Iranian Provinces, Geography Magazine and Environmental Planning, 38 (2), 17-32. (in Persian)
Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E, 89, 182–214.
Zhen, L., Huang, L., Wang, W. (2019). Green and sustainable closed-loop supply chain network design under uncertainty. Journal of Cleaner Production, 227, 1195-1209.