بهینه‌سازی دسترس‌پذیری نوعی سیستم‌ صنعتی چندوضعیتی با رویکرد زنجیره مارکوف

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه کردستان، سنندج، ایران.

2 دانشیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه کردستان، سنندج، ایران.

چکیده

هدف: انتخاب تأمین‌کنندگان از مسائل مهم در طراحی سیستم‌های صنعتی است. این مسئله باید با توجه به معیارهایی نظیر هزینه، قابلیت اطمینان، تعمیرپذیری و زمان تحویل قطعه‌هایی که عرضه شده و نیز اثر آنها بر هزینه‌های کل سسیستم تولیدی بررسی شود. هدف از این پژوهش، ارائه الگویی برای انتخاب تأمین‌کنندگان اجزای یک سیستم صنعتی چندوضعیتی با در نظر گرفتن هزینه، قابلیت ‌اطمینان و تعمیرپذیری اجزاست.
روش: ابتدا بلوک دیاگرام سیستم در دست بررسی ترسیم و حالت‌های مختلف سیستم با استفاده از شبکه مارکوف مدل‌سازی شد. سپس یک مدل برنامه‌ریزی مختلط عدد صحیح غیرخطی با استفاده از روابط حاصل از شبکه مارکوفی توسعه داده شده است. این مدل برای یک نمونه موردی به دو روش حل دقیق، با استفاده از نرم‌افزار GAMS و شمارش کامل حل شده و نتایج با یکدیگر مقایسهند‌اا شده‌اند‌.
یافته‌ها: با حل این مدل میزان سفارش قطعه‌های سیستم به‌گونه‌ای انتخاب می‌شود که مجموع هزینه‌های ساخت و بهره‌برداری سیستم شامل هزینه خرید قطعه‌ها و همچنین هزینه کاهش ظرفیت و توقف کامل سیستم هنگام بهره‌برداری کمینه شود. نتایج نشان می‌دهد که در نظر گرفتن اثر تشابه قطعه‌ها بر قیمت خرید، فاصله زمانی تحویل و سرعت تعمیر قطعه‌ها می‌تواند در تصمیم‌گیری برای انتخاب تأمین‌کننده مؤثر باشد.
نتیجه‌گیری: بر در نظر گرفتن اثر انتخاب قطعه‌های مشابه هنگام ارزیابی دسترس‌پذیری و هزینه کل سیستم تأکید می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Availability Optimization of a Multi-State Industrial System with the Markov Chain Approach

نویسندگان [English]

  • Zahra Sobhani 1
  • Mahmoud Shahrokhi 2
1 Ph.D. Candidate, Department of Industrial Engineering, Faculty of Engineering, Kurdistan University, Sanandaj, Iran
2 Assistant Prof., Department of Industrial Engineering, Faculty of Engineering, Kurdistan University, Sanandaj, Iran.
چکیده [English]

Objective: The choice of suppliers is one of the important issues in the design of industrial systems, which must be done with due regard to cost, reliability, repairability and delivery time of parts supplied and their effect on the total cost of the manufacturing system.Provide a template for selecting suppliers of a multi-state industrial system, taking into account the cost, reliability, and repairability of the system.
Methods: A nonlinear integer programming model has been developed using Markov's network results and solved for a case study in two different ways and the results have been compared: (1) accurate resolution, using GAMS software, and (2) complete counting.
Results: By solving this model, the order of parts of the system is selected so that the total cost of construction and operation of the system; including the cost of purchasing the components as well as the cost of reducing the capacity and the complete system shutdown during operation be minimized. The results show that taking into account the effect of components similarity on the purchase price, the delivery time and the speed of repair of components can be effective in choosing the supplier.
Conclusion: In conclusion, the effect of choosing the same components is emphasized when assessing the availability and cost of the entire system

کلیدواژه‌ها [English]

  • reliability
  • Redundancy
  • availability
  • Markov Chain
احمدی، سید حسین؛ گروسی مختارزاده، نیما (1392). بررسی و اولویت‎بندی میزان حساسیت دستگاه‌ها جهت تعمیرات و نگهداری پیشگیرانه با مدل مارتل و زاراس (مطالعه موردی: شرکت ماشین‌سازی تولید آتش). مدیریت صنعتی، 5(2)، 1-22.

شهرخی، محمود (1397). ارائه رویکردی برای محاسبه قابلیت اطمینان فازی بر پایه نرخ خرابی فازی. مدیریت صنعتی، 10(2)، 183- 200.

قاضی میرسعید، سید محمود؛ نجفی، امیرعباس؛ شهریاری، حمید (1393). ارائه روش حل دقیق برای بهبود پایایی سیستم‌های k از n در مسئله تخصیص مازاد با انتخاب راهبرد مازاد. مدیریت صنعتی، 6 (1)، 97- 110.

کاظمی، عالیه؛ مدرس، محمد؛ مهرگان، محمدرضا (1390). پیش‌بینی تقاضای انرژی بخش حمل‌ونقل با استفاده از مدل زنجیره مارکوف خاکستری: مطالعه‌ موردی در ایران. مدیریت صنعتی، 3 (7)، 117- 132.

 

References

Ahmadi, H., & Garosi Mokhtarzadeh, N. (2013). Investigating and Prioritizing the Sensitivity of the Devices for Preventive Maintenance Using the Martel and Zaras Model (Case Study: Fire Production Machinery Company). Industrial Management, 5(2), 1-22. (in Persian)

Bai, J. M., Yang, C. W., & Zeng, Y. (2019). Markov Modeling for the Availability of Firearms. In IOP Conference Series: Materials Science and Engineering, 473(1), 012049.

Buzacott, J. A. (1970). Markov approach to finding failure times of repairable systems. IEEE Transactions on Reliability19(4), 128-134.

Chern, M. S. (1992). On the computational complexity of reliability redundancy allocation in a series system. Operations research letters11(5), 309-315.

Chin-Chia, J. & Laih, Y. W. (2016). Distribution and Reliability Evaluation of Max-Flow in Dynamic Multi-State Flow Networks. European Journal of Operational Research,‏ 259 (3), 1045-1053.

de Smidt-Destombes, K. S., Van Elst, N. P., Barros, A. I., Mulder, H., & Hontelez, J. A. (2011). A spare parts model with cold-standby redundancy on system level. Computers & Operations Research, 38(7), 985-991.

Ghazi Mirsaid, M., Najafi, A. A., & Shahriari, H. (2014). Providing an exact solution to improve the reliability of k systems from n to the problem of surplus allocation by selecting the surplus strategy. Industrial Management, 6 (1), 110-197. (in Persian)

Gupta, S. (2019). Stochastic modelling and availability analysis of a critical engineering system. International Journal of Quality & Reliability Management, 36(2).

Hassett, T. F., Dietrich, D. L., & Szidarovszky, F. (1995). Time-varying failure rates in the availability and reliability analysis of repairable systems. IEEE Transactions on Reliability44(1), 155-160.

Kazemi, A., Modares, M. &  Mehregan, M. R. (2011). Forecasting Energy Demand for the Transportation Sector Using the Gray Markov Chain Model: A Case Study in Iran. Industrial Management, 3(7), 117-132. (in Persian)

Li, Y.Y., Ying, C., Zeng Hui, Y., Ning, T., & Rui, K. (2016). Reliability analysis of multi‌‌state systems subject to failure mechanism dependence based on a combination method. Reliability Engineering & System Safety, 166, 109-123.

Lisnianski, A., Laredo, D., & Haim, H. B. (2018). Short-Term Reliability Analysis of Power Plants with Several Combined Cycle Units. In Recent Advances in Multi-state Systems Reliability, 285-299.

Marseguerra, M., Zio, E. & Podofillini, L. (2005). Multi objective spare part allocation by means of genetic algorithms and monte-carlo simulation. Reliability Engineering & System Safety, 87(3), 325–335.

Nourelfath, M. & Ait-Kadi, D. (2007). Optimization of series-parallel multi-state systems under maintenance policies. Reliability Engineering & System Safety, 92(12), 1620–166.

Rui, P., Xiao, H. & Liu, H. (2016).‏ Reliability of multi-state systems with a performance sharing group of limited size. Reliability Engineering & System Safety, 166(1), 164-170.

Shahrokhi, M. (2018). Provide an approach to calculate fuzzy reliability based on fuzzy failure rate. Industrial Management, 10(2), 183-200. (in Persian)

Singhal, N., & Sharma, S. P. (2019). Availability Analysis of Industrial Systems Using Markov Process and Generalized Fuzzy Numbers. MAPAN34(1), 79-91.

Yeh, C. T., & Fiondella, L. (2017). Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures. Reliability Engineering & System Safety, 166, 138-150.