ارائۀ مدل ریاضی برای توسعۀ ظرفیت نیروگاه‎ها با در نظر گرفتن واحدهای تولید پراکنده و با هدف کنترل دی‎اکسیدکربن

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار گروه مدیریت صنعتی، دانشکدة مدیریت دانشگاه تهران، تهران، ایران

2 استاد گروه مدیریت صنعتی، دانشکدة مدیریت دانشگاه تهران، تهران، ایران

3 دانشیار دانشکده مهندسی صنایع، دانشگاه تهران، تهران، ایران

4 استاد دانشکده مهندسی صنایع، دانشگاه صنعتی شریف، تهران، ایران

5 دانشیار گروه مدیریت صنعتی، دانشکده مدیریت دانشگاه تهران،تهران، ایران

چکیده

این پژوهش با استفاده از برنامه‌ریزی ریاضی، مدلی برای توسعۀ ظرفیت نیروگاه‌ها با هدف کنترل دی‌اکسیدکربن ارائه کرده است. تابع هدف مدل شامل کمینه‎سازی مجموع تنزیل‎شدۀ ارزش هزینه‌های سرمایه‎گذاری نیروگاه‌های جدید، سوخت، نگهداری و تعمیرات و هزینۀ اجتماعی دی‌اکسیدکربن طی سال‎های 1390 تا 1404 بوده و محدودیت‌های مدل شامل «محدودیت‌های تقاضا»، «توسعۀ نیروگاه‌های تجدیدپذیر و تولید پراکنده» و «غیرمنفی بودن متغیر‎ها» است. مدل پیشنهادشده در سناریوهای مختلف با رویکرد‎های اقتصادی و زیست‎محیطی، اقتصادی و کاهش هزینۀ سرمایه‎گذاری تکنولوژی‌های تجدیدپذیر حل و تحلیل شده است. شایان ذکر است که پس از انجام سناریوی اول، حساسیت مدل ریاضی توسعۀ ظرفیت نیروگاه‌ها نسبت به تعدادی از پارامترها بررسی شد. این پارامترها شامل راندمان تکنولوژی‌های تولید برق، هزینۀ اجتماعی دی‌اکسیدکربن و هزینۀ نگهداری و تعمیرات تکنولوژی‌های تولید برق بودند. در سناریوی با رویکرد اقتصادی و زیست‎محیطی، تکنولوژی‌های سیکل ترکیبی، گازی CHP،بادی کوچک و بادی بزرگ و در سناریوی با رویکرد اقتصادی، تکنولوژی‌های سیکل ترکیبی، گازی CHPو بادی بزرگ موجه شدند. همچنین در سناریوی با رویکرد کاهش هزینۀ سرمایه‎گذاری، متغیر‎های مربوط به تکنولوژی‌های تجدیدپذیر، تکنولوژی‌های سیکل ترکیبی، گازی CHP، بادی کوچک، بادی بزرگ و فتوولتائیک مقدار گرفتند.

کلیدواژه‌ها


عنوان مقاله [English]

Proposing a Mathematical Model to Expand Power Generation Capacity Considering Dispersed Generation Units to Decrease Carbon Dioxide

نویسندگان [English]

  • Ezzatollah Asgharizadeh 1
  • Mohammad reza Mehrgan 2
  • Hamed Shakouri 3
  • Mohammad Modarres Yazdi 4
  • Mohammad Reza Taghizadeh Yazdi 5
1 Associate Professor, Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran
2 Professor, Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran.
3 NullAssociate Professor, Faculty of Industrial Engineering, University of Tehran, Tehran, Iran
4 Professor, Faculty of Industrial Engineering, Sharif University of Technology, Tehran, Iran
5 Mohammad Reza Taghizadeh Yazdi, Ph.D. Assistant Professor / Department of Industrial Management Faculty of Management / University of Tehran
چکیده [English]

This study presents a
mathematical model for the development of power plants capacity to control
carbon dioxide. The objective function of the model is to minimize the costs of
investing in new power plants, costs of fuels, costs of maintenance and social
costs of carbon dioxide over the years from 2011 to 2025. The model has some constraints
including demand, development of renewable power plants and development of dispersed
generation sites. The proposed model has been solved and analyzed in different
scenarios regarding approaches such as "economic and environmental", “economic”
and “decreasing the costs of investment in renewable technologies”. It should
be noted that having conducted the first scenario, the sensitivity of the
mathematical model has been studied in relation to a number of parameters.
These parameters include the efficiency of technologies, the social costs of
carbon dioxide and the costs of maintaining power generation technologies. In the
scenario with economic and environmental approach, combined cycle technologies,
CHP, small wind and large wind; and in the economic approach, combined cycle
technology, CHP and large wind have been justified. Moreover, in the scenario
with the reduction of investment costs, variables related to renewable
technologies, combined cycle technology, CHP, small wind, large wind and
photovoltaic have been taken into account.
 

کلیدواژه‌ها [English]

  • distributed generation
  • Greenhouse Gases
  • Power Generation Expansion Planning
  • Social Costs of Carbon Dioxide
منابع
شفیعی، س. ا.؛ مقدم تبریزی، م.ع.؛ فرمد، م. (1387). توسعۀ سیستم عرضۀ برق کشور در شرایط محدودیت سوخت نیروگاه‎ها در ماه‎های سرد. بیست و سومین کنفرانس بینالمللی برق.
غروی، م.؛ پرتوی راد، م. (1382). ارزیابی آثار کنترل انتشار مواد آلایندۀ هوا توسط صنعت برق بر هزینۀ تولید برق در ایران. اولین کنفرانس ملی نیروگاههای آبیکشور.
قادری شمیم، ا.؛ پارسا مقدم، م.؛ شیخ السلامی، م. ک. (1393). برنامه‎ریزی توسعۀ تولید با درنظر گرفتن سرمایه‎گذاری در برنامه‎های افزایش بازدهی انرژی. نشریۀ علمی ـ پژوهشی کیفیت و بهره‎وری صنعت برق ایران، 3 (5)، 26-18.
 میثاقی، فرشید؛ بارفروشی، ت.؛ جعفری، م. (1396). برنامه‎ریزی توسعۀ تولیدات پراکنده در پست‎های فوق توزیع با در نظر گرفتن توسعۀ پست‎های انتقال با استفاده از مدل دوسطحی جدید. فصلنامۀ مهندسی برق دانشگاه تبریز، 1(47).  
 
References
Cui, H., Dai, W. (2011). Multi-objective optimal allocation of distributed generation in smart grid. International conference on electrical and control engineering (ICECE), pp 713–717. Yichang, China, 16-18 September.
 Ghaderi Shamim, A., Parsa Moghaddam, M., Sheikh-El-Eslami, M.K. (2014). Generation Expansion Planning with Considering Energy Efficiency Investments. Iranian Electric Industry Journal of Quality and Productivity, 3(5), 18-26. (in Persian)
Gharavi, M., Partovi Rad, M. (2003). Evaluation of the effects of controlling the emission of pollutants by the electric power industry on the cost of electricity production in Iran. The first national conference of the country's hydroelectric plants, 25-31. (in Persian)
 Jin, S., Ryan, S. M., Watson, J. P., Woodruff, D. L. (2011). Modeling and Solving a Large-Scale Generation Expansion Planning Problem under Uncertainty. Industrial and Manufacturing Systems Engineering, 2(3-4), 209-242.
Luz, T., Moura, P., Almeida, A. D. (2018). Multi-objective power generation expansion planning with high penetration of renewables. Renewable and Sustainable Energy Reviews, 81 (1), 2637–2643.
 Misaghi, F., Barforoshi, T., Jafari, M. (2017). Distributed Generation Expansion Planning in Sub-Transmission Substations Considering Transmission Substations Expansions Using a Novel Bi-level Model. Tabriz Journal of Electrical Engineering, 47(1), 275-286. (in Persian)
  Sepasian, M. S., Seifi, H., Foroud, A.A., Hatami, A. R. (2009). A multiyear security constrained hybrid generation-transmission expansion planning algorithm including fuel supply costs. IEEE Transactions on Power Systems, 24 (3), 1609-1618.
 Shafiei, S. E., Moghaddam Tabrizi, M. A., Faramad, M. (2008). Development of the power supply system of the country under the conditions of the fuel supply of power plants in cold months. 23rd International Power Engineering Conference, Iran. (in Persian)
 Sharan, I., Balasubramanian, R., Integrated generation and transmission expansion planning including power and fuel transportation constraints. Energy Policy, 43, 275-284.
UK Electricity Generation Costs Update, Department of Energy and Climate Change (DECC), Jun. 2010.
 Valinejad, J., Barforoushi, T. (2015). Generation expansion planning in electricity markets: A novel framework based on dynamic stochastic MPEC. Electrical Power and Energy Systems, 70 (1), 108–117.