طراحی مدل ریاضی مدیریت سفارشات زنجیرۀ تأمین با تکیه بر رویکرد بهینه سازی استوار و ساختار هزینه یابی بر مبنای فعالیت

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استاد گروه مدیریت صنعتی، دانشکدۀ مدیریت، دانشگاه تهران، تهران، ایران

2 استاد گروه مدیریت صنعتی، دانشکدۀ مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

3 دانشجوی دکتری مدیریت صنعتی، دانشکدۀ مدیریت، دانشگاه تهران، تهران، ایران

چکیده

یکی از کارکردهای مهمی که شرکت­های تولیدی در زنجیرۀ تأمین با آن مواجه‎اند و تصمیماتِ مربوط بدان، تأثیر بسزایی بر رقابت‎پذیری آنها دارد، «مدیریت سفارش‎های زنجیرۀ تأمین» است. در این مسیر، مسائلی پیش روی مدیران قرار دارد که عبارت‎اند از: الف) ترکیب بهینۀ سفارش‎های زنجیرۀ تأمین کدام است؟ ب) سناریوهای گوناگون تصمیم در وضعیت عدم قطعیت هزینه­ها کدام‎اند؟ در واقع موارد بالا، پرسش­هایی است که در تحقیق حاضر به آنها پاسخ داده خواهد شد. هدف از این تحقیق، طراحی مدل ریاضی مدیریت سفارش‎های دو قطعۀ به‎کاررفته در زنجیرۀ تأمین یکی از شرکت‎های خودروسازی است. بدین منظور از دو رویکرد بهینه‌سازی استوار و هزینه­یابی بر مبنای فعالیت استفاده می‌شود. با توجه به ساختار هزینه­ای مدل، پیچیدگی اجزای هزینه­ای و عدم ­اطمینان برخی پارامترها، مدل تحقیق به مدلی استوار تبدیل شد تا پاسخ‌های آن قابل ‌اتکا باشد. در پایان نیز، برای ارزیابی صحت عملکرد مدل و بررسی کیفیت جواب‌ها، از تکنیک شبیه‌سازی استفاده شد. نتایج ضمن تأیید اعتبار مدل، نشان داد تخمین سبد سفارش‎ها و تدوین سناریوهای گوناگون و کاربردی امکان­پذیر است

کلیدواژه‌ها


عنوان مقاله [English]

Mathematical Model of Supply Chain Order Management Relying on Robust Optimization and Activity-Based Costing

نویسندگان [English]

  • Ahmad Jafanejad 1
  • Adel Azar 2
  • Seyed Abbas Ebrahimi 3
1 Prof. in Industrial Management, Tehran University, Tehran, Iran
2 Prof. in Industrial Management, Tarbiat Modarres University, Tehran, Iran
3 دانشجوی دکتری مدیریت صنعتی، دانشکدۀ مدیریت، دانشگاه تهران، تهران، ایران
چکیده [English]

One of the most important functions of manufacturers and producers related to supply chain issues and decisions is management of supply chain orders. But in this way, there are several questions such as (a) what is the best order portfolio between received orders? (b) what are various decision scenarios under uncertainty? Indeed, these are the questions we want to answer in this paper. The purpose of this research is designing the mathematical model of supply chain orders management belongs to an Automakers Company. For this reason, we use both robust optimization and activity based costing method to gain more accurate and better solutions. Due to cost structure used in this model and complexity of cost objects as well as uncertainty of some parameters, we change this model to a robust model to obtain more reliable results. Finally, to assess the validity of the model and quality of solutions, we use simulation techniques. Findings show the model is valid and applicable to determine orders portfolio and various decision scenarios.

کلیدواژه‌ها [English]

  • order portfolio
  • robust mathematical model
  • uncertainty
  • activity-based costing
  • simulation
Askarany, D., Yazdifar, H. & Askary, S. (2010). Supply chain management, activity-based costing and organi sational fac tors. International Journal of Production Economics 127, 238 –248.
Baykasoglu, A. & Kaplanoglu, V. (2008). Application of activity-based costing to a land transportation company: A case study. International Journal of Production Economics, 116(2), 308-324.
 Benton, W.C. (1953-1961). Quantity discount decision under conditions oF multiple items, multiple suppliers and resource limitation. International Journal oF Production Economics,. 27(199), 302-317.
Bertsimas, J.B. & Sim, M. (2004). The Price of Robustness. Operations Research, 52(1), 35–53.
Boonkhun, C., Chandra M.J. & Enscore, E.E. (2005). Application of activity based costing in investment decision. International Journal of Industrial Engineering, 12(1), 68-78.
Cooper, R. & Kaplan, R.S. (1991). The design of cost management systems: Text, cases and readings. Englewood Cliffs: Prentice-Hall.
Degraeve, Z. & Roodhooft, R. (2000). A mathematical programming approach for procurement using activity based costing. Journal of Business Finance & Accounting, 127(1-2), 69-98.
Degraeve, Z. and Roodhooft, R. (1998). Determining sourcing strategies: a decision
Fujii, S. & Kaihara, T. (2003). A basic study on cost-based scheduling in job shop for agile manufacturing. 7th World Multiconference on Systemics, Cybernetics and Informatics Proceedings, 13, 255-260.
 Gordon, G. (1978). System Simulation, 2nd ed., Prentice-Hall, Englewood Cliffs, N.J.
Gunasekaran, A. & Sarhadi, M. (1998). Implementation of activity-based costing in manufacturing. International Journal of Production Economics, 56-57(11), 231-242.
Haji, R., Marefdust, M., Ebrahimi, S.B. (2009). Finding the Cost of Inventory in Make to Order Supply Chain Under Vendor Managed Inventory Program, Journal of Industrial Management, 1(3), 21-36. (in Persian)
Improving the efficiency of the purchasing process using total cost of ownership information: The case of heating electrodes at Cockerill Sambre S.A. European Journal of Operational Research, 12 (1), 42-53.
Ioannou, G. & Sullivan, W.G. (1999). Use of activity-based costing and economic value analysis for the justification of capital investments in automated material handling systems. International Journal of Production Research, 37(9), 2109-2134.
Jafarnejad, A., Mehrgan, M., Olfat, L. & Fallah Lajimi, H. (2014). Configuring Integrated Supply Chain Network Stochastic Strategic. Journal of Industrial Management, 7 (1), 83-105.
Kaplan R. & Atkison A., (1998), Advanced Management Accounting: International Edition. 3rd edition, New Jersey: Prentice Hall, Upper Saddle River.
Karakas, E., Koyuncu, M., Erol, R. & Kokangul, A. (2010). Fuzzy programming for optimal product mix decisions based on expanded ABC approach. International Journal of Production Research, 48 (3), 729-744.
Kee, R. & Schmidt, C. (2000). A comparative analysis of utilizing activity-basedcosting and the theory of constraints for making product-mix decisions. International Journal of Production Economics, 63 (1), 1-17.
Kim, J. (1997). Activity-based framework for cost saving through the implementation of an ERP system. International journal of production research, 13(17), 3446-3457.
Kirche, E. & Srivastava, R. (2007). A resource-constrained profit-based dynamic order management model. International Journal of Computer Applications in Technology, 30(4), 273-280.
Kirche, E.T., Kadipasaoglu, S.N., and Khumawala, B.M. (2005). Maximizing supply chain profits with effective order management: Integration of Activity-Based Costing and Theory of Constraints with mixed-integer modeling. International Journal of Production Research, 43 (7), 1297 - 1311.
Kirche, E.T., Srivastava, R. & Khumawala, B., (2002). An ABC-based cost model with inventory and order level costs: A comparison with TOC. Proceedings of 33rd Annual Meeting of the Decision Sciences Institute, 23–26 November, San Diego, CA, 1733–1738.
Kleijnen J.P.C., (2001). Ethical issues in modeling: Some reflections. European Journal of Operational Research 130(1), 223–230.
Lea, B. & Fredendall, L.D. (2002). The impact of management accounting, product structure, product mix algorithm, and planning horizon on manufacturing performance. International Journal of Production Economics, 79(3), 279-299.
Liu, X., Cui, F., Meng, Q. & Pan, R. (2008). Research on the model of quality cost in CIMS environment. 2008 International Seminar on Business and Information Management (ISBIM 2008), p 368-371.
MacArthur, J.B. (1993). Theory of constraints and activity-based costing: friends or foes? Journal of Cost Management, 7(2), 50-56.
model based on activity and cost driver information. Journal of the Operational Research Society, 49(8), 781-789.
Mohaghar, A., Mehrgan, M. & Nazabadi, M. (2009). Optimizing automotive product portfolio using robust optimization. Journal of Industrial Management, 1(2), 139-152. (in Persian)
Mulvey, J.M., Vanderbei, R.J. & Zenios, S.A., (1995), Robust optimization of large-scale systems, Operations Research, 43 (2), 264–281.
order level costs: A comparison with TOC. International Journal of Production Research, 43 (8), 1685 - 1710.
Rabie, M., Azar, A., Modares Yazdi, M. & Fetanat-fard Haghighi, M. (2011). Designing a robust multiobjective sourcing model: Approach in order to reduce supply chain risk (Case study: Iran Khodro Co. supply chain). Journal of Industrial Management Perspective, (1): 57-77. (in Persian
Ramdas, K. & Sawhney, M. S. (2001). A cross-functional approach to evaluating, Research Society, 49(8), 781-789.
Roodhooft, R. & Konings, J. (1996). Vendor selection and evaluation an activity based costing approach. European Journal of Operational Research, 96 (1), 97-102.
Sadeghi Moghadam, M., Momeni, M. & Nalchigar, S. (2009). Material Flow Modeling in Supply Chain Management with Genetic Algorithm Approach. Journal of Industrial Management, 1(2), 71-88. (in Persian)
Shapiro, J.F. (1999). On the connections among activity-based costing, mathematical programming models for analyzing strategic decisions, and the resource-based view of the firm. European Journal of Operational Research, 118 (2), 295-314.
Sheu, C., Chen, M. & Kovar, S. (2003). Integrating ABC and TOC for better manufacturing decision making. Integrated Manufacturing Systems, 14(5), 433-441.
Singer, M. & Donoso, P. (2008). Empirical validation of an activity-based optimization system. International Journal of Production Economics, 113(1), 335-345.
Tsai, W. (1996). Activity-based costing model for joint products. Computers & Industrial Engineering, 31(3-4), 725-729.
Tsai, W., Lai, C., Tseng, L. & Chou, W. (2008). Embedding management discretionary power into ABC model for a joint product mix decision. International Journal of Production Economics, 115(1), 210-220.
Tsai, W.H., Hung, S.J. (2007). A fuzzy goal programming approach for green supply chain optimisation under activity-based costing and performance evalution with a value-chain structure. International Journal of Production Research, 24(12), 47-54 .
Vlajic, J.V., Vorst, J.A. & Haijema, R., (2012), A framework for designing robust food supply chains. International Journal Production Economics, 137(1), 176–189.
Yang, T. & Liu, Z. (2008). An inventory model based on activity-based costing. Proceedings of the 8th International Conference of Chinese Logistics and Transportation Professionals - Logistics: The Emerging Frontiers of Transportation and Development in China, p1336-1342.
Yang, T. (2008). DEA model for logistics cost evaluation based on activity analysis. International Seminar on Business and Information Management (ISBIM 2008), p149-152.
Zanjani, M.K., Ait-Kadi, D., & Nourelfath, M., (2010), Robust production planning in a manufacturing environment with random yield: A case in sawmill production planning, European Journal of Operational Research, 201, 882–891.