زمان‎بندی تعمیرات پیشگیرانه (PM) با استفاده از برنامه‎ریزی عدد صحیح و برنامه‌ریزی محدودیتی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه مدیریت، دانشکدۀ علوم اداری و اقتصاد، دانشگاه اصفهان، ایران

2 کارشناس‎ارشد مدیریت صنعتی، دانشکدۀ علوم اداری و اقتصاد، دانشگاه اصفهان، ایران

چکیده

 زمان­بندی تعمیرات پیشگیرانه به‎معنای انجام فعالیت­ها و وظایف پیشگیرانه به‎منظور کاهش یا حذف توقف تولید و حداکثرکردن قابلیت اطمینان تجهیزات است. مدل­های ریاضی ارائه‎شده برای زمان­بندی تعمیرات پیشگیرانه، با محدودیت­هایی چون، تعیین ترکیب انجام کارها توسط کارگران قبل از مدل­سازی، تک‎منبعی‎بودن و نداشتن کارایی محاسباتی مواجه‎اند، به همین دلیل برخی از پژوهشگران از الگوریتم­های هوش مصنوعی برای حل مسائل زمان‎بندی تعمیرات پیشگیرانه استفاده کرده‎اند. هدف این پژوهش زمان­بندی تعمیرات پیشگیرانه با استفاده از برنامه­ریزی محدودیتی است. برنامه­ریزی محدودیتی تلفیقی از برنامه‎ریزی ریاضی و هوش مصنوعی است. مدل­سازی در برنامه­ریزی ریاضی، طراحی انسانی هوشمند است، ولی در برنامه­ریزی محدودیتی الگوریتم­ها هوشمندند. در این پژوهش دو مدل برنامه­ریزی محدودیتی جدید برای زمان­بندی تعمیرات پیشگیرانه پیشنهاد شده است که ضمن بی‎نیازبودن به تعیین ترکیب­ انجام کارها توسط کارگران، در حالت چندمنبعی به‎کار برده می‎شود. جواب­های به‎دست­آمده از مثال­های عددی با مدل­های ریاضی مقایسه شدند و روایی مدل برنامه­ریزی محدودیتی به‎اثبات رسید. نتایج بیانگر توانایی برنامه­ریزی محدودیتی در مدل‎سازی و حل مسائل زمان­بندی تعمیرات پیشگیرانه است.

کلیدواژه‌ها


عنوان مقاله [English]

Preventive maintenance scheduling with integer programming and constraint programming

نویسندگان [English]

  • Majid Esmaelian 1
  • Hajar Bakran 2
1 Assistant Prof, Management department, Faculty of Economic and Administrative Sciences, University of Isfahan, Isfahan, Iran
2 MSc, Management department, Faculty of Economic and Administrative Sciences, University of Isfahan, Isfahan, Iran
چکیده [English]

Preventive maintenance scheduling is to perform a series of tasks that prevents or minimizes production breakdowns and improves the reliability. Mathematical models have been developed to solve the preventive maintenance scheduling problem. There are several limitations in the prior work in this area of research. Craft combinations are assumed to be given. The craft combination problem concerns the computation of all combinations of assigning multi skilled workers to accomplishing a particular task. Some research provides heuristic and artificial intelligence approach for integrated solution for the preventive maintenance scheduling problem with multi skilled workforce constraints. The purpose of this study is scheduling the preventive maintenance with constraint programming. Constraint programming is used in varied range of techniques such as artificial intelligence and operations research. Two novel preventive maintenance scheduling model bases on constraint programming are formulated to automatically produce the optimal solution and craft combination in multiple resource problems. Preventive maintenance scheduling problem with multiple and single resource solved with mathematical programming and constraint programming. The solution of these two approaches compared in numerical examples.

کلیدواژه‌ها [English]

  • Constraint Programming
  • constraint satisfaction problem
  • Mathematical Programming
  • preventive maintenance scheduling
Ahire, S., Greenwood, G., Gupta, A. & Terwilliger, M. (2000). Workforce constrained Preventive Maintenance Scheduling Using Evolution Strategies. Decision Sciences, 31(4): 833-859.
Allaoui, H., Lamouri, S., Artiba, A. & Aghezzaf, E. (2008). Simultaneously scheduling n jobs and the preventive maintenance on the two-machine flow shop to minimize the makespan. International Journal of Production Economics, 112(1): 161-167.
Apt, K. (2003). Principles of constraint programming. Cambridge University Press.
Brandt, F., Bauer, R., Völker, M. & Cardeneo, A. (2013). A constraint programming-based approach to a large-scale energy management problem with varied constraints. Journal of Scheduling, 16(6): 629-648.
Chen, Y., Guan, Z., Peng, Y., Shao, X. & Hasseb, M. (2010). Technology and system of constraint programming for industry production scheduling—Part I: A brief survey and potential directions. Frontiers of Mechanical Engineering in China, 5(4): 455-464.
Dechter, R. & Meiri, I. (1994). Experimental evaluation of preprocessing algorithms for constraint satisfaction problems. Artificial Intelligence, 68(2):211-241.
Dekker, R. (1995). On the use of operations research models for maintenance decision making. Microelectronics Reliability, 35(9): 1321-1331.
El Hachemi, N., Gendreau, M. & Rousseau, L. M. (2011). A hybrid constraint programming approach to the log-truck scheduling problem. Annals of Operations Research, 184(1): 163-178.
Fahle, T., Junker, U., Karisch, S. E., Kohl, N., Sellmann, M. & Vaaben, B. (2002). Constraint programming based column generation for crew assignment. Journal of Heuristics, 8(1): 59-81.
Frost, D. & Dechter, R. (1999). Maintenance scheduling problems as benchmarks for constraint algorithms. Annals of Mathematics and Artificial Intelligence, 26(1-4): 149-170.
Hongman, G. (2007). Preventive Maintenance Scheduling with Multi-skilled Workforce Constraints: Models, Algorithms, and Applications (Doctoral dissertation), University of Mississippi.
Kelbel, J. & Hanzálek, Z. (2011). Solving production scheduling with earliness/tardiness penalties by constraint programming. Journal of Intelligent Manufacturing, 22(4): 553-562.
Khayat, G. E., Langevin, A. & Riopel, D. (2006). Integrated production and material handling scheduling using mathematical programming and constraint programming. European Journal of Operational Research, 175(3):1818-1832.
Lamptey, G., Labi, S. & Li, Z. (2008). Decision support for optimal scheduling of highway pavement preventive maintenance within resurfacing cycle. Decision Support Systems, 46(1): 376-387.
Lettovský, L., Johnson, E. L. & Nemhauser, G. L. (2000). Airline crew recovery. Transportation Science, 34(4): 337-348.
Mason, A. J., Ryan, D. M. & Panton, D. M. (1998). Integrated simulation, heuristic and optimisation approaches to staff scheduling. Operations research, 46(2): 161-175.
Milano, M. & Wallace, M. (2006). Integrating operations research in constraint programming. 4OR, 4(3): 175-219.
Naderi, B., Zandieh, M. & Aminnayeri, M. (2011). Incorporating periodic preventive maintenance into flexible flowshop scheduling problems. Applied Soft Computing, 11(2): 2094-2101.
Nguyen, D. & Bagajewicz, M. (2008). Optimization of preventive maintenance scheduling in processing plants. Computer Aided Chemical Engineering, 25: 319-324.
Pereira, C. M., Lapa, C. M., Mol, A. C. & Da Luz, A. F. (2010). A Particle Swarm Optimization (PSO) approach for non-periodic preventive maintenance scheduling programming. Progress in Nuclear Energy, 52(8): 710-714.
Perrier, N., Langevin, A. & Campbell, J. F. (2006a). A survey of models and algorithms for winter road maintenance. Part I: system design for spreading and plowing. Computers & Operations Research, 33(1): 209-238.
Perrier, N., Langevin, A. & Campbell, J. F. (2006b). A survey of models and algorithms for winter road maintenance. Part II: system design for snow disposal. Computers & Operations Research, 33(1): 239-262.
Ram, B. & Olumolade, M. (1987). Preventive maintenance scheduling in the presence of a production plan. Production and Inventory Management, 8(1): 81-9.
Rezg, N., Chelbi, A. & Xie, X. (2005). Modeling and optimizing a joint inventory control and preventive maintenance strategy for a randomly failing production unit: analytical and simulation approaches. International Journal of Computer Integrated Manufacturing, 18(2-3): 225-235.
Rossi, F., Van Beek, P. & Walsh, T. (Eds.). (2006). Handbook of constraint programming. USA, Elsevier.
Rossi, R., Tarim, S. A., Hnich, B. & Prestwich, S. (2012). Constraint programming for stochastic inventory systems under shortage cost. Annals of Operations Research, 195(1): 49-71.
Scarf, P. A. (1997). On the application of mathematical models in maintenance. European Journal of operational research, 99(3):493-506.
Suryadi, H. & Papageorgiou, L. G. (2004). Optimal maintenance planning and crew allocation for multipurpose batch plants. International journal of production research, 42(2): 355-377.
Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European journal of operational research, 139(3): 469-489.
Wang, S. & Yu, J. (2010). An effective heuristic for flexible job-shop scheduling problem with maintenance activities. Computers & Industrial Engineering, 59(3): 436-447.
Zhou, X., Xi, L. & Lee, J. (2009). Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programming. International Journal of Production Economics, 118(2): 361-366.