Annam, S., Cheranchery, M. F., Chakraborty, A., & Maitra, S. (2023). Areas of intervention for enhancing the knowledge of safe driving: An experience in West Bengal, India. Case Studies on Transport Policy, 13, 101065. https://doi.org/10.1016/j.cstp.2023.101065
Awan, S., Mehmood, Z., Nazeer Chaudhry, H., Tariq, U., Rehman, A., Saba, T., & Rashid, M. (2022). Profiling Casualty Severity Levels of Road Accidents Using Weighted Majority Voting. Computers, Materials & Continua, 71(3), 4609–4626. https://doi.org/10.32604/cmc.2022.019404
Başkan, İ. B., Sana, F., & Uğurlu, Ö. (n.d.). Navigational Safety in the Suez Canal: HFACS-PV Analysis of Human-Organizational Factors and Environmental Risks with Comparative Insights. Turkish Journal of Maritime and Marine Sciences, 11, Article 3. https://doi.org/10.52998/trjmms.1741624
Bisht, L. S., & Tiwari, G. (2022). Assessment of Fatal Rear-End Crash Risk Factors of an Expressway in India: A Random Parameter NB Modeling Approach. https://doi.org/10.1061/JTEPBS.0000767
Bobermin, M., & Ferreira, S. (2021). A novel approach to set driving simulator experiments based on traffic crash data. Accident Analysis & Prevention, 150, 105938. https://doi.org/10.1016/j.aap.2020.105938
Chen, J., Zhang, J., Wang, P., & Jin, Y. (2025). A k-nearest text similarity-BiGRU approach for duration prediction of traffic accidents on expressways. Discover Applied Sciences, 7(7), 1–21. https://doi.org/10.1007/s42452-025-07366-7
Cordeiro, E. A., & Pitombeira-Neto, A. R. (2023). Deep reinforcement learning for the dynamic vehicle dispatching problem: An event-based approach (No. arXiv:2307.07508). arXiv. https://doi.org/10.48550/arXiv.2307.07508
Duan, X., Niu, T., & Huang, Q. (2018). An Improved Shuffled Frog Leaping Algorithm and Its Application in Dynamic Emergency Vehicle Dispatching. Mathematical Problems in Engineering, 2018(1), 7896926. https://doi.org/10.1155/2018/7896926
Garnaik, M. M., Giri, J. P., & Panda, A. (2023). Impact of highway design on traffic safety: How geometric elements affect accident risk. Ecocycles, 9(1), Article 1. https://doi.org/10.19040/ecocycles.v9i1.263
Ghasemi, R., Alidoosti, A., Hosnavi, R., & Norouzian Reykandeh, J. (2018). Identifying and Prioritizing Humanitarian Supply Chain Practices to Supply Food before an Earthquake. Industrial Management Journal. 10(1),1-16.https://doi.org/10.22059/imj.2018.234645.1007246 (in Persian)
Gheisari, M. (2022). Identifying Influencing Factors of Road Accidents in Emerging Road Accident Black spots (No. 2022090338). Preprints. https://doi.org/10.20944/preprints202209.0338.v1
Global status report on road safety 2018. (n.d.). Retrieved August 7, 2024, from https://www.who.int/publications/i/item/9789241565684
Gupta, R., & Chaudhari, O. K. (2020). Application of Fuzzy Logic in Prevention of Road Accidents Using Multi Criteria Decision Alert. Current Journal of Applied Science and Technology, 51–61. https://doi.org/10.9734/cjast/2020/v39i3631073
Hamdan, S. M. S., Barakat, S., Mahfouz, K. H., & Ghuzlan, K. A. (2023). Traffic Accident Severity Prediction Model using AI. 2023 Advances in Science and Engineering Technology International Conferences (ASET), 1–5. https://doi.org/10.1109/ASET56582.2023.10180861
Hu, Q., Mehdizadeh, A., Vinel, A., Cai, M., Rigdon, S. E., Zhang, W., & Megahed, F. M. (2023). Shortest Path Problems with a Crash Risk Objective. Sage Journals. https://doi.org/10.1177/03611981231195053
Kayisu, A. K., Bahnasawi, M. E., Egbine, K., Alsisi, M., Kambale, W. V., Bokoro, P. N., & Kyamakya, K. (2025). System Dynamics in Road Safety: A Comprehensive Overview with Selected Use-Cases. https://pure.uj.ac.za/en/publications/system-dynamics-in-road-safety-a-comprehensive-overview-with-sele
Kizito, A., & Semwanga, A. R. (2021). Modeling the Complexity of Road Accidents Prevention: A System Dynamics Approach. Https://Services.Igi-Global.Com/Resolvedoi/Resolve.Aspx?Doi=10.4018/IJSDA.2020040102. https://www.igi-global.com/article/modeling-the-complexity-of-road-accidents-prevention/www.igi-global.com/article/modeling-the-complexity-of-road-accidents-prevention/247984
Kumar, N., Acharya, D., & Lohani, D. (2021). An IoT-Based Vehicle Accident Detection and Classification System Using Sensor Fusion. IEEE Internet of Things Journal, 8(2), 869–880. https://doi.org/10.1109/JIOT.2020.3008896
Mbarek, A., Jiber, M., Yahyaouy, A., & Sabri, A. (2023). Black spots identification on rural roads based on extreme learning machine. International Journal of Electrical and Computer Engineering (IJECE), 13(3), 3149. https://doi.org/10.11591/ijece.v13i3.pp3149-3160
Mohanty, A., Mohapatra, A. G., Kumar Mohanty, S., Yang, T., Singh Rathore, R., Alkhayyat, A., & Gupta, D. (2025). Integrating Cognitive Intelligence and VANET for Effective Traffic Congestion Detection in Smart Urban Mobility. IEEE Access, 13, 61538–61548. https://doi.org/10.1109/ACCESS.2025.3557276
Nain, A., Jain, D., & Trivedi, A. (2023). Multi-criteria decision-making methods: Application in humanitarian operations. Benchmarking: An International Journal, 31(6), 2090–2128. https://doi.org/10.1108/BIJ-11-2022-0673
Park, R. C., & Hong, E. J. (2022). Urban traffic accident risk prediction for knowledge-based mobile multimedia service. Personal and Ubiquitous Computing, 26(2), 417–427. https://doi.org/10.1007/s00779-020-01442-y
Parung, J., Santoso, A., Prayogo, D. N., Griselda, F., & Tedjakusuma, A. P. (2022). Multi-objective Location-Transportation Problem for Relief Distribution. Proceedings of the 19th International Symposium on Management (INSYMA 2022), Surabaya, Indonesia (Offline). https://www.atlantis-press.com/proceedings/insyma-22/125977329
Patil, A., & Madaan, J. (2024). A Study on the Research Clusters in the Humanitarian Supply Chain Literature: A Systematic Review. Logistics, 8(4), 128. https://doi.org/10.3390/logistics8040128
Ren, C., Wang, X., Gao, G., & Li, J. (2020). Urban Regional Logistics Distribution Path Planning Considering Road Characteristics. Discrete Dynamics in Nature and Society, 2020(1), 2413459. https://doi.org/10.1155/2020/2413459
Sadeghi Moghadam, M. R., Taghizadeh Yazdi, M. R., & Noferesti, R. (2022). Designing a Humanitarian Supply Chain Coordination Model for Housing Reconstruction after Floods: An Agent-Based Simulation. Industrial Management Journal. 13(3),467–491. https://doi.org/10.22059/imj.2021.324747.1007848 (in Persian)
Santos, D., Saias, J., Quaresma, P., & Nogueira, V. B. (2021). Machine Learning Approaches to Traffic Accident Analysis and Hotspot Prediction. Computers, 10(12), Article 12. https://doi.org/10.3390/computers10120157
Schlögl, M. (2020). A multivariate analysis of environmental effects on road accident occurrence using a balanced bagging approach. Accident Analysis & Prevention, 136, 105398. https://doi.org/10.1016/j.aap.2019.105398
Singh, A., Kapur, A., Anand, A., Vaidh, D., Luthra, G., & Boominathan, P. (2022). Road Accident Monitoring System and Dynamic Insurance Pricing Using Fog Computing. 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 485–490. https://doi.org/10.1109/I-SMAC55078.2022.9987333
Stević, Ž., Das, D. K., & Kopić, M. (2021). A Novel Multiphase Model for Traffic Safety Evaluation: A Case Study of South Africa. Mathematical Problems in Engineering, 2021(1), 5584599. https://doi.org/10.1155/2021/5584599
Sun, T., Zhang, Z., & Lu, L. (2024). Severity of traffic accidents on horizontal curves and their determinants: A bayesian network and information theory model. EBSCOhost. https://openurl.ebsco.com/EPDB%3Agcd%3A11%3A29943643/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A178403545&crl=c&link_origin=scholar.google.com
Swales, J. (2014). Create a research space (CARS) model of research introductions (pp. 12–15) [Writing about writing: A college reader].
Tan, K., Liu, W., Xu, F., & Li, C. (2023). Optimization Model and Algorithm of Logistics Vehicle Routing Problem under Major Emergency. Mathematics, 11(5), 1274. https://doi.org/10.3390/math11051274
Temiz, S., Kazanç, H. C., Soysal, M., & Çimen, M. (2025). A probabilistic bi‐objective model for a humanitarian location‐routing problem under uncertain demand and road closure. https://doi.org/10.1111/itor.13475
Wu, M., Jia, H., Luo, D., Luo, H., Zhao, F., & Li, G. (2023). A multi-attention dynamic graph convolution network with cost-sensitive learning approach to road-level and minute-level traffic accident prediction. IET Intelligent Transport Systems, 17(2), 270–284. https://doi.org/10.1049/itr2.12254
Yadav, N., Thakur, U., Poonia, A., & Chandel, R. (2021). Post-Crash Detection and Traffic Analysis. 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), 1092–1097. https://doi.org/10.1109/SPIN52536.2021.9565964
Zainal, I., Lestari, F., Gunawan, S., Adiwibowo, A., Kadir, A., & Ramadhan, N. A. (2022). FIRE VEHICLE ROUTE, RESPONSE TIME, AND SERVICE COVERAGE OPTIMIZATIONS IN PEKOJAN URBAN VILLAGE, TAMBORA SUBDISTRICT FIRE HOTSPOT OF JAKARTA CITY, INDONESIA. PREPOTIF : Jurnal Kesehatan Masyarakat, 6(2), 1454–1468. https://doi.org/10.31004/prepotif.v6i2.5026
Zhu, S., Zhang, S., Lang, H., Jiang, C., & Xing, Y. (2022). The Situation of Hazardous Materials Accidents during Road Transportation in China from 2013 to 2019. International Journal of Environmental Research and Public Health, 19(15), Article 15. https://doi.org/10.3390/ijerph19159632
Zou, Y., Zhang, Y., & Cheng, K. (2021). Exploring the Impact of Climate and Extreme Weather on Fatal Traffic Accidents. Sustainability, 13(1), Article 1. https://doi.org/10.3390/su13010390