Abdalrahman, A. & Zhuang, W. (2020). Dynamic pricing for differentiated PEV charging services using deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 23(2), 1415-1427.
Adelnia Najafabadi, H., Shekarchizadeh, A., Nabiollahi, A., Khani, N. & Rastgari, H. (2022). Dynamic pricing for information goods using revenue management and recommender systems. Journal of Revenue and Pricing Management, 21(2), 153–163.
Alexander, R. B. & Ling, J. S. (2019). Multi-segment dynamic pricing for airline tickets using model-free reinforcement learning.
Aljafari, B., Jeyaraj, P. R., Kathiresan, A. C. & Thanikanti, S. B. (2023). Electric vehicle optimum charging-discharging scheduling with dynamic pricing employing multi agent deep neural network. Computers and Electrical Engineering, 105, 108555.
Armstrong, A. & Meissner, J. (2010). Railway revenue management: Overview and models (operations research). Department of Management Science, Lancaster University Working Papers, (MRG/0019).
Avila, N., Hardan, S., Zhalieva, E., Aloqaily, M. & Guizani, M. (2022). Energy Pricing in P2P Energy Systems Using Reinforcement Learning. arXiv preprint arXiv:2210.13555.
Bagherpour, R., Mozayani, N. & Badnava, B. (2021). Improving demand-response scheme in smart grids using reinforcement learning. International Journal of Energy Research, 45(15), 21082-21095.
Bertsimas, D. & Kallus, N. (2020). From predictive to prescriptive analytics. Management Science, 66(3), 1025-1044.
Bondoux, N., Nguyen, A. Q., Fiig, T. & Acuna-Agost, R. (2020). Reinforcement learning applied to airline revenue management. Journal of Revenue and Pricing Management, 19(5), 332-348.
Burger, B. & Fuchs, M. (2005). Dynamic pricing—A future airline business model. Journal of Revenue and Pricing Management, 4(1), 39-53.
Chen, S., Li, L., Chen, Z. & Li, S. (2020). Dynamic pricing for smart mobile edge computing: A reinforcement learning approach. IEEE Wireless Communications Letters, 10(4), 700-704.
Collins, A. & Thomas, L. (2012). Comparing reinforcement learning approaches for solving game theoretic models: a dynamic airline pricing game example. Journal of the Operational Research Society, 63(8), 1165–1173.
Cong, P., Zhou, J., Chen, M. & Wei, T. (2020). Personality-guided cloud pricing via reinforcement learning. IEEE Transactions on Cloud Computing, 10(2), 925-943.
Den Boer, A. V. (2015). Dynamic pricing and learning: historical origins, current research, and new directions. Surveys in operations research and management science, 20(1), 1-18.
Du, J., Cheng, W., Lu, G., Cao, H., Chu, X., Zhang, Z. & Wang, J. (2021). Resource pricing and allocation in MEC enabled blockchain systems: An A3C deep reinforcement learning approach. IEEE Transactions on Network Science and Engineering, 9(1), 33-44.
Du, P. & Chen, Q. (2017). Skimming or penetration: optimal pricing of new fashion products in the presence of strategic consumers. Annals of Operations Research, 257, 275-295.
Fraija, A., Agbossou, K., Henao, N., Kelouwani, S., Fournier, M. & Hosseini, S. S. (2022). A discount-based time-of-use electricity pricing strategy for demand response with minimum information using reinforcement learning. IEEE Access, 10, 54018-54028.
Gao, J., Le, M. & Fang, Y. (2022). Dynamic air ticket pricing using reinforcement learning method. RAIRO-Operations Research, 56(4), 2475-2493.
Gosavi, A., Bandla, N. & Das, T. (2002). A reinforcement learning approach to a single leg airline revenue management problem with multiple fare classes and overbooking. IIE Transactions, 34, 729–742.
Jing, Y., Guo, S., Chen, F., Wang, X. & Li, K. (2021). Dynamic differential pricing of high-speed railway based on improved GBDT train classification and bootstrap time node determination. IEEE Transactions on Intelligent Transportation Systems, 23(9), 16854-16866.
Jung, H. (2022). An optimal charging and discharging scheduling algorithm of energy storage system to save electricity pricing using reinforcement learning in urban railway system. Journal of Electrical Engineering & Technology, 17(1), 727-735.
Kamandanipour, K., Haji Yakhchali, S. & Tavakkoli-Moghaddam, R. (2023). Dynamic revenue management in a passenger rail network under price and fleet management decisions. Annals of Operations Research, 1-25.
Kamandanipour, K., Yakhchali, S. H. & Tavakkoli-Moghaddam, R. (2023). Learning-based dynamic ticket pricing for passenger railway service providers. Engineering optimization, 55(4), 703-717.
Kim, B. G., Zhang, Y., Van Der Schaar, M. & Lee, J. W. (2015). Dynamic pricing and energy consumption scheduling with reinforcement learning. IEEE Transactions on smart grid, 7(5), 2187-2198.
Koc, I. & Arslan, E. (2021). Dynamic ticket pricing of airlines using variant batch size interpretable multi-variable long short-term memory. Expert Systems with Applications, 175, 114794.
Krasheninnikova, E., García, J., Maestre, R. & Fernández, F. (2019). Reinforcement learning for pricing strategy optimization in the insurance industry. Engineering applications of artificial intelligence, 80, 8-19.
Lei, Z. & Ukkusuri, S. V. (2023). Scalable reinforcement learning approaches for dynamic pricing in ride-hailing systems. Transportation Research Part B: Methodological, 178, 102848.
Liao, Y., Qiao, X., Yu, Q. & Liu, Q. (2021). Intelligent dynamic service pricing strategy for multi-user vehicle-aided MEC networks. Future Generation Computer Systems, 114, 15-22.
Liu, H., Chen, C., Li, Y., Duan, Z. & Li, Y. (2022). Chapter 1 - Introduction. In H. Liu, C. Chen, Y. Li, Z. Duan & Y. Li (Eds.), Smart Metro Station Systems (pp. 1–32). Elsevier.
Liu, Y., Zhang, D. & Gooi, H. B. (2020). Data-driven decision-making strategies for electricity retailers: A deep reinforcement learning approach. CSEE Journal of Power and Energy Systems, 7(2), 358-367.
Lu, R., Hong, S. H. & Zhang, X. (2018). A dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach. Applied energy, 220, 220-230.
Lu, T., Chen, X., McElroy, M. B., Nielsen, C. P., Wu, Q. & Ai, Q. (2020). A reinforcement learning-based decision system for electricity pricing plan selection by smart grid end users. IEEE Transactions on Smart Grid, 12(3), 2176-2187.
Mehrjoo, S., Amoozad Mahdirji, H., Heidary Dahoei, J., Razavi Haji Agha, S. H. & Hosseinzadeh, M. (2023). Providing a Robust Dynamic Pricing Model and Comparing It with Static Pricing in Multi-level Supply Chains Using a Game Theory Approach. Industrial Management Journal, 15(4), 534-565. (in Persian)
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
Moghaddam, V., Yazdani, A., Wang, H., Parlevliet, D. & Shahnia, F. (2020). An online reinforcement learning approach for dynamic pricing of electric vehicle charging stations. IEEE Access, 8, 130305-130313.
Narahari, Y., Raju, C. V. L., Ravikumar, K. & Shah, S. (2005). Dynamic pricing models for electronic business. Sadhana, 30(2), 231–256.
Nian, R., Liu, J. & Huang, B. (2020). A review on reinforcement learning: Introduction and applications in industrial process control. Computers & Chemical Engineering, 139, 106886.
Pandey, V. & Boyles, S. D. (2018). Dynamic pricing for managed lanes with multiple entrances and exits. Transportation Research Part C: Emerging Technologies, 96, 304-320.
Pandey, V., Wang, E. & Boyles, S. D. (2020). Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations. Transportation Research Part C: Emerging Technologies, 119, 102715.
Poh, L. Z., Connie, T., Ong, T. S. & Goh, M. K. O. (2023). Deep reinforcement learning-based dynamic pricing for parking solutions. Algorithms, 16(1), 32.
Qiu, D., Ye, Y., Papadaskalopoulos, D. & Strbac, G. (2020). A deep reinforcement learning method for pricing electric vehicles with discrete charging levels. IEEE Transactions on Industry Applications, 56(5), 5901-5912.
Raju, C. V. L., Narahari, Y. & Ravikumar, K. (2006). Learning dynamic prices in electronic retail markets with customer segmentation. Annals of Operations Research, 143(1), 59–75.
Rana, R. & Oliveira, F. S. (2014). Real-time dynamic pricing in a non-stationary environment using model-free reinforcement learning. Omega, 47, 116–126.
Russell, S. & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3th ed.). Prentice-Hall, Upper Saddle River.
Saharan, S., Bawa, S. & Kumar, N. (2020). Dynamic pricing techniques for Intelligent Transportation System in smart cities: A systematic review. Computer Communications, 150, 603-625.
Sato, K., Seo, T. & Fuse, T. (2021). A reinforcement learning-based dynamic congestion pricing method for the morning commute problems. Transportation Research Procedia, 52, 347-355.
Shan, X., Lv, X., Wu, J., Zhao, S. & Zhang, J. (2024). Revenue management method and critical techniques of railway passenger transport. Railway Sciences, 3(5), 636-649.
Stavinova, E., Chunaev, P. & Bochenina, K. (2021). Forecasting railway ticket dynamic price with Google Trends open data. Procedia Computer Science, 193, 333–342.
Strauss, A. K., Klein, R. & Steinhardt, C. (2018). A review of choice-based revenue management: Theory and methods. European Journal of Operational Research, 271(2), 375–387.
Sutton, R. S. & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Tan, M. (2018). Optimal Pricing for Tickets with Myopic and Strategic Passengers. Ind. Eng. Manag, 23, 107-115.
Wan, Y., Qin, J., Yu, X., Yang, T. & Kang, Y. (2021). Price-based residential demand response management in smart grids: A reinforcement learning-based approach. IEEE/CAA Journal of Automatica Sinica, 9(1), 123-134.
Wang, S., Bi, S. & Zhang, Y. A. (2019). Reinforcement learning for real-time pricing and scheduling control in EV charging stations. IEEE Transactions on Industrial Informatics, 17(2), 849-859.
Wittman, M. D. & Belobaba, P. P. (2019). Dynamic pricing mechanisms for the airline industry: a definitional framework. Journal of Revenue and Pricing Management, 18(2), 100–106.
Wu, X., Qin, J., Qu, W., Zeng, Y. & Yang, X. (2019). Collaborative optimization of dynamic pricing and seat allocation for high-speed railways: An empirical study from China. IEEE Access, 7, 139409-139419.
Xiaoqiang, Z., Lang, M. & Jin, Z. (2017). Dynamic pricing for passenger groups of high-speed rail transportation. Journal of Rail Transport Planning & Management, 6(4), 346-356.
Xu, H., Wen, J., Hu, Q., Shu, J., Lu, J. & Yang, Z. (2022). Energy Procurement and Retail Pricing for Electricity Retailers via Deep Reinforcement Learning with Long Short-term Memory. CSEE Journal of Power and Energy Systems, 8(5), 1338-1351.
Xu, Z., Guo, Y., Sun, H., Tang, W. & Huang, W. (2023). Deep reinforcement learning for competitive DER pricing problem of virtual power plants. CSEE Journal of Power and Energy Systems.
Yan, Z., Zhang, P., Zhang, Y., Liu, H., Feng, C. & Li, X. (2019). Joint decision model of group ticket booking limits and individual passenger dynamic pricing for the high-speed railway. Symmetry, 11(9), 1128.
Yang, Q. Q., Xu, L. P. & Yang, Y. (2012). Dynamic Pricing for Multiple-Class High-Speed Railway on the Internet. Applied Mechanics and Materials, 253–255, 1263–1267.
Yousefi, A. & Pishvaee, M. S. (2022). A hybrid machine learning-optimization approach to pricing and train formation problem under demand uncertainty. RAIRO-Operations Research, 56(3), 1429-1451.
Zeng, H. & Zhang, Y. (2015). Intertemporal Pricing of Substitutes under the Coexistence of Myopic and Strategic Consumers. Syst. Eng, 65, 33-39.
Zhang, P., Wang, C., Aujla, G. S. & Batth, R. S. (2021). ReLeDP: Reinforcement-learning-assisted dynamic pricing for wireless smart grid. IEEE Wireless Communications, 28(6), 62-69.
Zheng, J., Gan, Y., Liang, Y., Jiang, Q. & Chang, J. (2021). Joint Strategy of Dynamic Ordering and Pricing for Competing Perishables with Q-Learning Algorithm. Wireless Communications and Mobile Computing, (1), 6643195.
Zhu, Y. T., Wang, F. Z., Lv, X. Y. & Pan, Y. (2014, August). Dynamic pricing for railway tickets with demand-shifted passenger groups. In 2014 International Conference on Management Science & Engineering 21th Annual Conference Proceedings (pp. 256-262). IEEE.