Agrawal, A.K., Jagannathan, M. & Delhi, V.S.K. (2021). Control Focus in Standard Forms: An Assessment through Text Mining and NLP. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 13(1). https://doi.org/10.1061/(asce)la.1943-4170.0000441.
Antons, D., Grünwald, E., Cichy, P. & Salge, T. O. (2020). The application of text mining methods in innovation research: current state, evolution patterns, and development priorities. R&D Management, 50(3), 329-351.
Atanassov, K.T. (1986). Intuitionistic fuzzy sets., Fuzzy Sets and Systems, 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3.
Bakır, M., Akan, Ş. & Durmaz, E. (2019). Exploring Service Quality of Low-Cost Airlines in Europe: an Integrated MCDM Approach., Economics and Business Review, 5(2), 109–130. https://doi.org/10.18559/ebr.2019.2.6.
Ban, H. J., Kim, H. S. (2019). Understanding customer experience and satisfaction through airline passengers. online review. Sustainability, 11(15), 4066.
Çalı, S. & Balaman, Ş.Y. (2019). Improved decisions for marketing, supply and purchasing: Mining big data through an integration of sentiment analysis and intuitionistic fuzzy multi criteria assessment., Computers and Industrial Engineering, 129, 315–332. https://doi.org/10.1016/j.cie.2019.01.051.
Chow, C.K.W. (2014). Customer satisfaction and service quality in the Chinese airline industry. Journal of Air Transport Management, 35, 102–107. https://doi.org/10.1016/j.jairtraman. 2013.11.013.
Eirinaki, M., Pisal, S. & Singh, J. (2012). Feature-based opinion mining and ranking., Journal of Computer and System Sciences, 78(4), 1175–1184. https://doi.org/10.1016/j.jcss. 2011.10.007.
Farzadnia, S. & Vanani, I.R. (2022). Identification of opinion trends using sentiment analysis of airlines passengers' reviews. Journal of Air Transport Management, 103, 102232.
Greer, C.R. & Lei, D. (2012). Collaborative Innovation with Customers: A Review of the Literature and Suggestions for Future Research. International Journal of Management Reviews, 14(1), 63–84. https://doi.org/10.1111/j.1468-2370.2011.00310.x.
Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management, 68, 35–47. https://doi.org/10.1016/j.jairtraman.2017.06.001.
Hashemkhani Zolfani, S. & Derakhti, A. (2020). Synergies of text mining and multiple attribute decision making: a criteria selection and weighting system in a prospective MADM outline. Symmetry, 12(5), 868.
Hassani, H., Beneki, C., Unger, S., Mazinani, M. T. & Yeganegi, M. R. (2020). Text mining in big data analytics. Big Data and Cognitive Computing, 4(1), 1.
Heidary Dahooie, J. Raafat, R., Qorbani, A. R. & Daim, T. (2021). An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making. Technological Forecasting and Social Change, 173, 121158. https://doi.org/10.1016/j.techfore.2021.121158
Heidary Dahooie, J., Husseinzadeh Kashan, A., Shoaei Naeini, Z., Vanaki, A. S., Zavadskas, E. K. & Turskis, Z. (2022). A hybrid multi-criteria-decision-making aggregation method and geographic information system for selecting optimal solar power plants in Iran.
Energies,
15(8), 2801.
https://doi.org/10.3390/en15082801
Hu, J., Zhang, X., Yang, Y., Liu, Y. & Chen, X. (2020). New doctors ranking system based on VIKOR method.
International Transactions in Operational Research,
27(2), 1236-1261.
https://doi.org/10.1111/itor.12569
Hung, C. C. & Chen, L. H. (2010). A multiple criteria group decision making model with entropy weight in an intuitionistic fuzzy environment.
Intelligent automation and computer engineering, 17-26.
https://doi.org/10.1007/978-90-481-3517-2_2
Husain, S., Ahmad, Y. & Alam, M. A. (2012). A study on the role of intuitionistic fuzzy set in decision making problems. International journal of computer applications, 48(0975-888), 35-41.
Hussain, R., Al Nasser, A. & Hussain, Y.K. (2015) Service quality and customer satisfaction of a UAE-based airline: An empirical investigation. Journal of Air Transport Management, 42, 167–175. https://doi.org/10.1016/j.jairtraman.2014.10.001.
Kaya, T. & Öztürk, Z. K. (2020). Feature analysis for multi-criteria rating values of airline companies. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 333-344.
Kumar, G. & Parimala, N. (2020). An Integration of Sentiment Analysis and MCDM Approach for Smartphone Recommendation, International Journal of Information Technology and Decision Making, 19(4), 1037–1063. https://doi.org/10.1142/S021962202050025X.
Li, Y., Zhang, Y. & Xu, Z. (2020). A Decision-Making Model Under Probabilistic Linguistic Circumstances with Unknown Criteria Weights for Online Customer Reviews, International Journal of Fuzzy Systems, 22, 777–789. https://doi.org/10.1007/s40815-020-00812-1.
Liang, R. & Wang, J. Q. (2019). A Linguistic Intuitionistic Cloud Decision Support Model with Sentiment Analysis for Product Selection in E-commerce, International Journal of Fuzzy Systems, 21, 963–977. https://doi.org/10.1007/s40815-019-00606-0.
Liang, X., Liu, P. & Wang, Z. (2019). Hotel selection utilizing online reviews: A novel decision support model based on sentiment analysis and DL-VIKOR method, Technological and Economic Development of Economy, 25(6), 1139–1161. https://doi.org/10.3846/tede. 2019.10766.
Mohtashamimaali, M., Hoseinzade Kashan, A. & Heidary, J. (2023). The data-driven decision-making model to identify the factors affecting the satisfaction of traders of online exchanges: A study of Google Play and Apple Store. Iranian journal of management sciences, 17(68), 157-180. (in Persian)
Nosrati Malekjahan, A., Husseinzadeh Kashan, A. & Sajadi, SM. (2024). A novel sequential risk assessment model for analyzing commercial aviation accidents: Soft computing perspective, Risk Analysis. Available at: https://doi.org/10.1111/risa.14486.
Oum, T.H., Yu, C. &Fu, X. (2003). A comparative analysis of productivity performance of the world’s major airports: Summary report of the ATRS global airport benchmarking research report – 2002. Journal of Air Transport Management, 9(5), 285–297. https://doi.org/10.1016/S0969-6997(03)00037-1.
Ravi, K. & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications, Knowledge-Based Systems, 89, 14–46. https://doi.org/10.1016/j.knosys.2015.06.015.
Sahoo, S. K. & Goswami, S. S. (2023). A comprehensive review of multiple criteria decision-making (MCDM) Methods: advancements, applications, and future directions. Decision Making Advances, 1(1), 25-48.
Shannon, C.E. (1948). A Mathematical Theory of Communication, Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
Sharma, H., Tandon, A., Kapur, P. K. & Aggarwal, A. G. (2019). Ranking hotels using aspect ratings based sentiment classification and interval-valued neutrosophic TOPSIS. International Journal of System Assurance Engineering and Management, 10(5), 973-983. https://doi.org/10.1007/s13198-019-00827-4
Sotoudeh-Anvari, A. (2022). The applications of MCDM methods in COVID-19 pandemic: A state of the art review. Applied Soft Computing, 126, 109238.
Taherdoost, H. & Madanchian, M. (2023). Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia, 3(1), 77-87.
Vanani, I. R. & Majidian, S. (2020). Meta-Heuristic Algorithms: A Concentration on the Applications in Text Mining.
In Big Data, IoT, and Machine Learning (pp. 113-132). CRC Press.
https://doi.org/10.1201/9780429322990-6
Vlachos, I.K. & Sergiadis, G.D. (2007). Intuitionistic fuzzy information - Applications to pattern recognition, Pattern Recognition Letters, 28(2), 197–206. https://doi.org/10.1016/j.patrec.2006.07.004.
Wan, Y. & Gao, Q. (2016). An Ensemble Sentiment Classification System of Twitter Data for Airline Services Analysis, in Proceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015, 1318–1325. https://doi.org/10.1109/ICDMW.2015.7.
Wang, L., Wang, X. K., Peng, J. J. & Wang, J. Q. (2020). The differences in hotel selection among various types of travellers: A comparative analysis with a useful bounded rationality behavioural decision support model. Tourism management, 76, 103961.
Wright, K.B. (2005) Researching internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services, Journal of Computer-Mediated Communication, 10(3). https://doi.org/10.1111/j.1083-6101.2005.tb00259.x.
Wu, C. & Zhang, D. (2019). Ranking products with IF-based sentiment word framework and TODIM method, Kybernetes, 48(5), 990–1010. https://doi.org/10.1108/K-01-2018-0029.
Yang, Z., Xiong, G., Cao, Z., Li, Y. & Huang, L. (2019). A Decision Method for Online Purchases Considering Dynamic Information Preference Based on Sentiment Orientation Classification and Discrete DIFWA Operators,
IEEE Access, 7, 77008–77026.
https://doi.org/10.1109/ACCESS.2019.2921403.
Yang, Z., Ouyang, T., Fu, X. & Peng, X. (2020). A decision-making algorithm for online shopping using deep-learning–based opinion pairs mining and q-rung orthopair fuzzy interaction Heronian mean operators, International Journal of Intelligent Systems, 35(5), 783–825. https://doi.org/10.1002/int.22225.
Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
Zeleny, M. (1976) Attribute-Dynamic Attitude Model (Adam). Management Science, 23(1), 12–26. https://doi.org/10.1287/mnsc.23.1.12.
Zhang, C., Tian, Y. X., Fan, L. W. & Li, Y. H. (2020). Customized ranking for products through online reviews: a method incorporating prospect theory with an improved VIKOR, Applied Intelligence, 50(6), 1725–1744. https://doi.org/10.1007/s10489-019-01577-3.
Zhang, D., Li, Y. & Wu, C. (2020). An extended TODIM method to rank products with online reviews under intuitionistic fuzzy environment. Journal of the Operational Research Society, 71(2), 322–334. https://doi.org/10.1080/01605682.2018.1545519.