References
Alinovi, A., Eleonora B., Roberto, M. (2012). Reverse Logistics: a stochastic EOQ-based inventory control model for mixed manufacturing/remanufacturing systems with return policies. International Journal of Production Research, 50 (5), 1243-1264.
Allameh, G., Esmaeili, M., Tajvidi, T. (2014). Developing several pricing models in green supply chain under risk by Game Theory Approach. Journal of Industrial Management, 6 (4), 767-789. (in Persian)
Beheshti, H. M. (2010). A decision support system for improving performance of inventory management in a supply chain network. International Journal of Productivity and Performance Management, 59(5), 452-467.
Bushuev, M. A., Guiffrida, A., Jaber, M. Y., Khan, M. (2015). A review of inventory lot sizing review papers. Management Research Review, 38(3), 283-298.
Carlsson, C., Fuller, R. (1994a). Fuzzy if-then rules for modeling interdependencies in FMOP problems, in: Proceedings of EUFIT’94 Conference, Aachen, Germany, Verlag der Augustinus Buchhandlung, 1504-1508.
Carlsson, C., Fuller, R. (1994b). Fuzzy reasoning for solving fuzzy multiple objective linear programs, in: R. Trappl ed., Cybernetics and Systems ’94, Proceedings of the Twelfth European Meeting on Cybernetics and Systems Research, World Scientific Publisher, London, 1: 295-301.
Carlsson, C., Fuller, R. (1998a). Multiobjective optimization with linguistic variables, in: Proceedings of the Sixth European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), Aachen, Verlag Mainz, Aachen, 2, 1038-1042.
Carlsson, C., Fuller, R. (1998b). Optimization with linguistic values. TUCS Technical Reports, Turku Centre for Computer Science. Available in: http://uni-obuda.hu/users/fuller.robert/ TR157.pdf.
Carlsson, C., Fuller, R. (2000). Multi objective linguistic optimization, Fuzzy sets and systems, 115, 5-10.
De, L. N., Goswami, A. (2009). Probabilistic EOQ model for deteriorating items under trade credit financing. International Journal of Systems Science, 40(4), 335–346.
De, S. K., Sana, S. S. (2015). Multi-criterion multi-attribute decision-making for an EOQ model in a hesitant fuzzy environment.Pacific Science Review A: Natural Science and Engineering,17(2), 61-68.
Dutta, P., Chakraborty, D., Roy, A. R. (2005). A single-period inventory model with fuzzy random variable demand. Mathematical and Computer Modelling, 41 (8-9), 915–922.
Dutta, P., Chakraborty, D., Roy, A. R. (2007). Continuous review inventory model in mixed fuzzy and stochastic environment. Applied Mathematics and Computation, 188 (1), 970–980.
Eynan, A., Kropp, D.H. (2007). Effective and simple EOQ-like solutions for stochastic demand periodic review systems. European Journal of Operational Research, 180(3), 1135-1143.
Farsijani, F., Abdoos, M.R. (2011), Using the Fuzzy Models for Ordering System in Inventory Control, Journal of Industrial Management, 3 (6), 99-112. (in Persian)
Friedman, M. F. (1984). On a stochastic extension of the EOQ formula. European Journal of Operational Research, 17 (1), 125–127.
Hayya, J. C., Harrison, T. P., Chatfield, D. C. (2009). A solution for the intractable inventory model when both demand and lead time are stochastic. International Journal of Production Economics, 122 (2), 595–605.
Jafanejad, A., Azar, A., Ebrahimi, S.A. (2016). Mathematical Model of Supply Chain Order Management Relying on Robust Optimization and Activity-Based Costing. Journal of Industrial Management, 8 (3), 333-358. (in Persian)
Kalantari, H., Yousefli, A., Ghazanfari, M., Shahanaghi, K. (2014). Fuzzy transfer point location problem: a possibilistic unconstrained nonlinear programming approach. The International Journal of Advanced Manufacturing Technology, 70 (5-8), 1043-1051.
Khan, M., Jaber, M. Y., Guiffrida, A. L., Zolfaghari, S. (2011). A review of the extensions of a modified EOQ model for imperfect quality items. International Journal of Production Economics, 132 (1), 1–12.
Lee, W. C., Wu, J. W. (2002). An EOQ model for items with Weibull distributed deterioration, shortages and power demand pattern, International Journal of Information and Management Sciences, 13 (2), 19–34.
Liu, B. (2008). Theory and practice of uncertain programming(second edition). Springer- Verlag.
Maddah, B., & Noueihed, N. (2017). EOQ holds under stochastic demand, a technical note. Applied Mathematical Modelling, 45, 205-208.
Mondal, S., Maiti, M. (2003), Multi-item fuzzy EOQ models using genetic algorithm. Computers and Industrial Engineering, 44 (1), 105–117.
Muriana, C. (2016). An EOQ model for perishable products with fixed shelf life under stochastic demand conditions. European Journal of Operational Research, 255(2), 388-396.
Omrani, H., Keshavarz, M. (2014). An interval programming approach for developing economic order quantity model with imprecise exponents and coefficients. Applied Mathematical Modelling,38(15), 3917-3928.
Panda, D., Kar, S., Maiti, M. (2008). Multi-item EOQ model with hybrid cost parameters under fuzzy/fuzzy-stochastic resource constraints: a geometric programming approach. Computers and Mathematics with Applications, 56 (11), 2970–2985.
Park, K. S. (1987). Fuzzy-set theoretic interpretation of economic order quantity, IEEE Transactions on Systems, Man and Cybernetics, 17 (6), 1082–1084.
Pentico, D. W., Drake, M. J. (2011). A survey of deterministic models for the EOQ and EPQ with partial backordering. European Journal of Operational Research, 214 (2), 179–198.
Pereira, V., Costa, H. G. (2015). A literature review on lot size with quantity discounts: 1995-2013. Journal of Modelling in Management, 10 (3), 341-359.
Render, B., Stair Jr, R. M., & Hanna, M. E. (2009). Quantitative Analysis for management (10th ed.). Pearson Education, Upper Saddle River, NJ.
Roy, T. K., Maiti, M. (1997). A fuzzy EOQ model with demand dependent unit cost under limited storage capacity. European Journal of Operational Research, 99 (2), 425–432.
Sadjadi, S. J., Ghazanfari, M, Yousefli, A. (2010). Fuzzy pricing and marketing planning model: A possibility geometric programming approach. Expert Systems with Applications, 37 (4), 3392-3397.
Samanta, B., Al-Araimi, S. A. (2001). An inventory control model using fuzzy logic, International Journal of Production Economics, 73 (3), 217–226.
Sana, S. S. (2011). The stochastic EOQ model with random sales price, Applied Mathematics and Computation, 218 (2), 239–248.
Waliv, R. H., Hemant, P. U. (2016). Fuzzy stochastic inventory model for deteriorating item. Yugoslav Journal of Operations Research, 27(1), 91-97.
Wang, C. H. (2010). Some remarks on an optimal order quantity and reorder point when supply and demand are uncertain. Computers and Industrial Engineering, 58 (4), 809– 813.
Wang, X., Tang, W., Zhao, R. (2007). Random fuzzy EOQ model with imperfect quality items. Fuzzy Optimization and Decision Making, 6 (2), 139–153.
Yousefli, A., Ghazanfari, M., & Abiri, M. B. (2014). An Integrated Model for Optimization Oriented Decision Aiding and Rule Based Decision Making in Fuzzy Environment. Journal of Fuzzy Set Valued Analysis, 2014, 1-13.
Yousefli, A., Kalantari, H., & Ghazanfari, M. (2018). Stochastic transfer point location problem: A probabilistic rule-based approach. Uncertain Supply Chain Management, 6(1), 65-74.
Yu, G. (1997). Robust economic order quantity models. European Journal of Operational Research, 100 (3), 482-493.