An efficient preference learning method based on ELECTRE TRI model for multi-criteria inventory classification

Document Type : Research Paper

Authors

1 MSc. Student in Industrial Management, Islamic Azad University, Tehran, Iran

2 Assistant Prof., Islamic Azad University E-Campus, Tehran, Iran

Abstract

The multi-criteria ABC analysis is a well known inventory management method for classifying inventory. In the most ABC classification applications, it has been considered fully compensatory approaches, i.e. items have been privilege badly in one or more criteria could be placed in good classes, so it is necessary non-compensatory approach to be noticed. ELECTRE TRI is an outranking relations based model that consider non-compensatory approach, although suffers from the complexity and cost of determining the large number of decision-makers preferences (parameters). In this paper we propose a new method which learns all the decision-makers' preferences from assignment example at the same time using the Particle Swarm Optimization(PSO) algorithm, and will be applied in ABC classification. Against the data mining standard techniques that classify items in nominal way, this model has the ability to categorize items into ordinal classes. The evaluation of proposed method on the illustrated inventory datasets shows high quality and competitive results compared with several standard classification models.

Keywords


Almeida-Dias, J., Figueira, J., & Roy, B. (2009). ELECTRE TRI-C: A multiple criteria sorting method based on characteristic reference actions. EuropeanJournalofOperationalResearch, Vol. 204 (2010) 565–580.
Cailloux, O., Meyer, P., & Mousseau, V. (2012). Eliciting ELECTRE TRI category limits for a group of decision makers. EuropeanJournalofOperationalResearch, 223 (2012) 133–140.
Coelli, T., Prasada Rao, D., O'Donnell, C., & Battese, G. (2006). Data Envelopment Analysis An Introduction to Efficiency and Productivity Analysis. Springer, 161-181.
Dias, L. C., & Mousseau, V. (2006). Inferring Electre's veto-related parameters from outranking examples. EuropeanJournalofOperationalResearch, (170), 172–191.
Doumpos, M., Marinakis, Y., Marinaki, M., & Zopounidis, C. (2008). An evolutionary approach to construction of outranking models for multicriteria classification: The case of theelectre tri method. EuropeanJournalofOperationalResearch, 199; 496 – 505.
Fernandez, E., Navarro, J., & Mazcorro, G. (2012). Evolutionary multi-objective optimization for inferring outranking model’s parameters under scarce reference information and effects of reinforced preference. FoundationsofComputingAndDecisionSciences, 163-197.
Figueira, J., & Roy, B. (2002). Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure. EuropeanJournalofOperationalResearch, 139; 317–326.
Flores, B., & Whybark, D. (1987). Implementing multiple criteria ABC analysis. JournalofOperationsManagement, 7(1); 79-84.
Flores, B., Olson, D., & Dorai, V. (1992). Management of multi criteria inventory Classification. MathematicalandComputerModeling, 71-82.
García, S., Fernández, A., Luengo, J., & Herrera, F. (2009). A Study of Statistical Techniques and Performance Measures for Genetics-Based Machine Learning: Accuracy and Interpretability. SoftComputing, 959-977.
García, S., Fernández, A., Luengo, J. & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. InformationSciences, (180); 2044-2064.
Goletsis, Y., Papaloukas, C., Fotiadis, D., Likas, A., & Michalis, L. (2004). Automated ischemic beat classification using genetic algorithms and multicriteria decisionanalysis. EETransactionsonBiomedicalEngineering, 51 (10), 1717–1725.
Hastie, T., Tibshirani, R., & Friedman, J. (2008). TheElementsofStatisticalLearningDataMining,Inference,andPrediction. Second Edition Springer.
Jiapeng, L., Xiuwu, L., Zhao, W., & Yang, N. (2015). A classification approach based on the outranking model for multiple criteria ABC analysis. Omega,http://dx.doi.org/10.1016/j.omega.
Kadziński, M., Tervonen, T., & b, F. (2014). Robust multi-criteria sorting with the outranking preference model and characteristic profiles. Omega;55, 126–140.
Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. InProceedingsoftheIEEEInternationalConferenceonNeuralNetworks, 4; 1942 - 1948.
Lei, Q., Chen, J., & Zhou, Q. (2005). Multiple criteria inventory classification based on principle components analysis and neural network. AdvancesinNeuralNetworks, (3498);1058-1063.
Minnetti, V., & Leone, R. D. (2014). The Estimation of the Parameters in Multi-Criteria Classification Problem: The Case of the Electre Tri Method. AnalysisandModelingofComplexDatainBehavioralandSocialSciences, 93-101.
Mousseau, V., & Slowinski, R. (1998). Inferring an ELECTRE TRI Model from Assignment Examples. JournalofGlobalOptimization, (12); 157-174.
Mousseau, V., Figueira, J., & Naux, J. (2001). Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results. EuropeanJournalofOperationalResearch, 130(2); 263–275.
Ngothe, A., & Mousseau, V. (2002). Using Assignment Examples to Infer Category Limits for the ELECTRE TRIMethod. JournalOfMulti-CriteriaDecisionAnalysisAnal.11; 29–43.
Pederson, M., & Chipperfield. (2010). Simplyfying Particle Swarm Optimization. AppliedSoftComputing, 10; 618-628.
Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers&OperationsResearch,33(3); 695-700.
Safaei Ghadikolaei, A., & Esmaeilzadeh, M. (2011). A New Model For Comparing Models Results Of Multi – Criteria ABC Inventory Classification (A Case Study: Saipa Corp). Scientific-ResearchJournalofShahedUniversity, (47-2) :207-224. (inPersian)
Silver, E., Pyke, D., & Peterson, R. (1998). Inventorymanagementandproductionplanningandscheduling. New York.: Wiley.
Soylu, B., & Akyol, B. (2014). Multi-criteria inventory classification with reference items. Computers&IndustrialEngineering, (69):12-20.
Torabi, S., Hatefi, S., & Saleck Pay, B. (2012). ABC inventory classification in the presence of both quantitative and qualitative criteria. Computers&IndustrialEngineering, 63(3): 530-537.
Trawiński, B., Smętek, M., Telec, Z., & Lasota, T. (2012). Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. InternationalJournalofAppliedMathematicsandComputerScience, 22(4); 867–881.
Tsai, C., & Yeh, S. (2008). A multiple objective particle swarm optimization approach for inventory classification. InternationalJournalofProductionEconomics, 114(2); 656-666.
Vencheh, H. (2010). An improvement to multiple criteria ABC inventory classification. EuropeanJournalofOperationalResearch., 201(3):962-965.
Vencheh, H., & Mohamadghasemi, A. (2011). A fuzzy AHP-DEA approach for multiple criteria ABC inventory classification. ExpertSystemswithApplications, 38(4); 3346-3352.
Xinchao, Z. (2010). A Perturbed Particle Swarm algorithm for numerical optimization. AppliedSoftComputing, 10(1); 119-124.
Zhan, Z.-H., Zhang, Y., & Chung, H.-H. (2009). Adaptive Particle Swarm Optimization. IEEETransactionsOnSystem,ManandCybernetics, 39 (6); 1362-1381.
Zheng, J., Metchebon, S., Mousseau, V., & Pirlot, M. (2014). Learning criteria weights of an optimistic ELECTRE TRI sorting rule. Computers&OperationsResearch49, 28-40.