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Objective: This study maximizes expected retail profit by jointly optimizing product 

assortment and shelf-space allocation, considering substitution effects and space-elastic 

demand. The problem’s NP-hardness, compounded by category-level bounds and store 

capacity, renders exact methods impractical for large-scale instances. Therefore, we 

develop a computationally efficient framework to generate near-optimal shelf plans 

aligned with real-world constraints.  

Methodology: We propose a hybrid Memetic Algorithm embedded with Iterated Local 

Search (ILS), combining evolutionary global exploration with local hill-climbing 

refinement. A two-phase initialization ensures every candidate planogram satisfies 

capacity constraints. Each chromosome encodes item-to-shelf mappings, with facings 

emerging endogenously. Mechanisms, including crossover, mutation, and diversity 
control, preserve solution validity and mitigate premature convergence. The framework 

was validated using real data from the Iranian retail chain Ofoq Kourosh, encompassing 

39 product categories and 21,000 cm of total shelf length. 

Results: The algorithm consistently converged toward feasible solutions. Under the 

original category bounds, profit reached 3.04 million; relaxing these bounds improved 

profit by 6.2% to 3.25 million. Allocation outcomes aligned with demand elasticity: 

impulse-driven categories reached upper limits, while low-elasticity staples stabilized 

near minima. Pareto analysis confirmed that roughly 20% of categories generated over 

80% of profit. Notably, the optimized solution resulted in a 37% increase in profit 

compared to the current store configuration. 

Conclusion: Results confirm the efficacy of hybrid metaheuristics for complex retail 
optimization. The framework consistently achieved near-optimal solutions under realistic 

constraints. Managerially, shelf-space allocation should prioritize high-elasticity 

categories while maintaining a minimal representation of staples. Future research should 

extend this framework to multi-store and omni-channel contexts with dynamic demand 

modeling. 
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Introduction 

In contemporary grocery retail, assortment planning is high-stakes because shelf space is a scarce 

and expensive resource, and "a large number of products compete with each other to obtain more 

shelf space," making space-aware optimization central to sales and shopper satisfaction (Ziari & 

Sajadieh, 2025). At the same time, the operational scale is massive—a typical supermarket carries 

roughly 33,000 SKUs—so even small listing/delisting moves ripple across perception, operations, 

and performance (Sethuraman et al., 2022). Moreover, adding items indiscriminately can inflate 

decision effort, as larger assortments increase the information-processing load and choice 

difficulty, which may undermine the gains. Therefore, breadth must be curated to ensure navigation 

effort remains manageable (Pham et al., 2025).  

Today’s retailers must allocate scarce shelf space while coping with approximately 30% 

growth in the number of items compared to a decade ago, making assortment choices directly 

consequential for both profit and shopper experience (Bianchi-Aguiar et al., 2021). Empirical 

syntheses further show that "more variety" can overshoot: across 42 categories, item reductions of 

up to 54% delivered an average sales lift of +11 %, indicating that curated breadth can outperform 

maximal breadth. Crucially, substitution softens delisting risk (Hübner & Kuhn, 2024). Formal 

assortment theory under explicit substitution also shows the problem is NP-complete, and that 

capacity utilization and the identity of optimal SKUs depend on substitution levels, so naïve "add 

more" or greedy rules may fail (Çömez-Dolgan et al., 2021). Mohaghar et al. (2020) propose a 

four-echelon omni-channel supply chain model for a seasonal product under stochastic demand, 

demonstrating that centralized coordination yields higher overall profit compared to decentralized 

decision-making. Their findings highlight the strategic value of integrated planning in complex 

retail networks. On the implementation side, real planograms are bound by four classes of 

constraints—shelf, product, multi-shelf, and category—so fast heuristics are required at realistic 

sizes where exact solvers often time out. Contemporary decision support, therefore, integrates 

assortment, shelf-space, and replenishment with space-elastic demand and substitution. 

Computational tests on retail data show profit improvements resulting from this integration.  

Moreover, because demand and elasticity inputs are often noisy or missing, Distributionally 

Robust Optimization (DRO) offers principled stability by treating uncertainty via discrepancy-

based ambiguity sets that shrink toward the truth as data accumulate—making recommendations 

less brittle in practice (Kuhn et al., 2025). In a two-echelon vendor-managed inventory setting with 

Poisson-distributed retail demand, system costs are explicitly sensitive to the demand rate—higher 
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demand levels lead to increased costs—underscoring how demand parameters directly influence 

inventory control and replenishment decisions (Haji et al., 2009).  

Recent methodology has shifted decisively toward fast metaheuristics that jointly select the 

assortment and allocate facings under space-elastic demand and explicit substitution, as exact 

solvers scale poorly under real-world planogram constraints. A 2024 systematic review maps this 

trend and highlights GA-based and local-improvement hybrids (e.g., GA + tabu/ILS) as practical 

workhorses for large instances and integrated objectives (Heger & Klein, 2024). Within this stream, 

Hübner et al. (2020) optimize two-dimensional (tilted) shelves under stochastic demand, space 

elasticity, and substitution, using a specialized GA that achieves approximately 99% average 

solution quality compared to exact benchmarks and reports profit uplifts of up to 15% in a retail 

case. Omitting demand effects can significantly reduce profits, underscoring the importance of 

modeling substitution and price elasticity within the formulation rather than addressing them ex 

post. Complementing this, Czerniachowska et al. (2021) construct a GA around four families of 

merchandising constraints—shelf, shelf-type/level, product, and virtual segments with 

capping/nesting— demonstrating that a chromosome encoding facings, capping, and nesting, 

combined with a repair step, yields efficient and feasible planograms with short runtimes relative 

to CPLEX. Finally, Czerniachowska et al. (2023) propose lightweight, feasibility-first heuristics 

that prune the search space to admissible sequences only; across 45 instances, they find feasible 

solutions far more often than CPLEX and achieve, on average, 95% of the best observed profit 

with minute-level compute—evidence that simple, industrializable rules can rival heavy 

optimization under tight time budgets. 

Our method operates at the category–shelf level, where retailers actually define assortments. 

Feasibility is governed by group-level minimum and maximum bounds, along with a strict store-

wide capacity constraint, reflecting the real limits within which assortments must be selected. The 

profit objective combines direct contribution margins with substitution-driven recapture and space-

elastic demand, while item-share inputs enter the objective as demand weights that shape the 

expected mix without acting as hard constraints. Since the problem is NP-hard, we employ a 

memetic algorithm that combines extensive genetic exploration with targeted local improvement, 

supported by repair and diversification mechanisms to maintain feasibility and diversity. The result 

is a pipeline that generates high-margin, operationally credible assortments aligned with category 

bounds and total store capacity. 

The remainder of this paper develops and validates this framework as follows: the literature 

review synthesizes five decades of research—from early space-elasticity experiments to recent 
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robust and omni-channel formulations—and identifies the methodological gaps that motivate our 

hybrid approach. The problem definition section formalizes the objective function, substitution 

structure, and capacity constraints, followed by a detailed exposition of the Memetic/ILS 

algorithm, including initialization, crossover, mutation, hill-climbing, and diversity control 

mechanisms. The computational experiments section presents results from four algorithmic 

configurations, utilizing real data from 39 product categories, to examine the impact of population 

size and constraint relaxation on solution quality and convergence behavior. Finally, the discussion 

interprets these findings in light of theoretical expectations and managerial implications, while 

acknowledging limitations and charting directions for future research. 

Literature Background 

Against this contemporary backdrop, it is helpful to trace how the literature has evolved. Research 

on assortment and shelf-space optimization has evolved over the past five decades, beginning with 

early empirical studies of space elasticity in the 1970s and gradually advancing toward integrated, 

stochastic, and robust optimization models. The shelf-space literature originates from in-store 

experiments documenting space elasticity. Early work demonstrated that allocating more facings 

to a product tends to increase its sales, albeit with diminishing returns. Even with manual data 

collection, regression analyses confirmed a systematic but tapering sales lift, laying the empirical 

foundation for subsequent space-elasticity models (Anderson & Amato, 1974; Curhan, 1972). 

Later studies began to couple product selection with space allocation in supermarkets, anticipating 

today’s integrated planning perspective (Hansen & Heinsbroek, 1979). Marketing–operations 

research subsequently quantified the effects of horizontal and vertical positioning, demonstrating 

the practical magnitude of shelf-driven demand. For example, moving a product from the worst to 

the best horizontal location could materially increase sales (Dreze et al., 1994). 

As the field transitioned from descriptive to prescriptive approaches, researchers embedded 

space-elasticity and positioning effects into decision models and showed how to linearize 

diminishing-returns profit curves to maintain solvability at retail scale (Hansen et al., 2010). 

Building on this foundation, Hwang et al. (2005) integrated vertical and horizontal shelf positions 

into a joint space-allocation and inventory-control model. Drawing on retailer case studies, they 

demonstrated that shifting a brand from lower to higher shelf levels could yield double-digit sales 

gains, and they proposed a genetic algorithm heuristic that scaled effectively to realistic category 

sizes. Concurrently, category-management surveys clarified the tactical division of assortment 

selection, shelf-space planning, and in-store replenishment, and advocated for their integration 

(Hübner & Kuhn, 2012). 
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Later reviews observed that assortment models often omit space elasticity, while shelf-space 

models typically ignore substitution effects—highlighting the need for integrated formulations 

(Hübner, 2011; Hübner & Kuhn, 2012). Kök and Fisher (2007) were pivotal in this regard: by 

combining assortment, substitution, and space elasticity in a newsvendor-type model, they 

demonstrated that ignoring substitution could result in a misestimation of profits by more than 

10%. Their heuristic, tested on categories of up to 25 products, revealed both structural 

properties—such as a preference for smaller items under tight space constraints—and the 

limitations of earlier models. 

Murray et al. (2010) extended this conversation into retail practice, demonstrating through 

interviews and surveys how shelf planning, assortment, and supplier negotiations are intertwined. 

Their results emphasized that optimization models must be reconciled with managerial judgment 

and planogram feasibility. Similarly, Baron et al. (2011) examined consumer responses to shelf 

configurations in experimental settings, demonstrating that block placements and adjacency cues 

could shift brand-switching probabilities by measurable margins. These findings underscored the 

importance of modeling not only elasticity but also perceptual effects. 

Lotfi et al. (2011) advanced methodological integration by proposing a weighted goal 

programming model that jointly optimized replenishment planning and shelf allocation under 

budget, storage, and perishability constraints. In a supermarket case, their LINGO-based model 

showed that reallocating just 5% of shelf space between brands could improve service levels 

without reducing margins. Hübner and Kuhn (2012) further examined substitution effects within 

assortment optimization, while Farias et al. (2013) added a theoretical perspective by casting 

assortment optimization as a robust choice-modeling problem, providing bounds in the absence of 

complete substitution data. Together, these works pushed the literature toward more rigorous 

formulations. 

A key advancement was the integration of assortment choice with shelf allocation under space-

elastic demand and substitution, demonstrating how facings and vertical/horizontal placement 

jointly shape demand. This research stream also emphasized block placement and "planogram 

feasibility" constraints (Hübner & Schaal, 2017). Hübner et al. (2016)  formalized this approach 

through a capacitated assortment model under stochastic demand and substitution. Using datasets 

of up to 50 products, they demonstrated that ignoring substitution could result in a reduction of 

expected profits by more than 15%. Their heuristic closed much of the computational gap left by 

earlier models. 
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Subsequent work extended the focus to two-dimensional shelves, emphasizing rectangular 

blocks, adjacency, and the need to co-optimize item selection, facings, assignment, and 

arrangement—not merely counts of facings (Hübner et al., 2020). Parallel studies examined 

revenue maximization under vertical placement effects, revealing the computational burden of 

realistic planogramming (Geismar et al., 2015). Bianchi-Aguiar et al. (2021) provided a 

comprehensive review, codifying decisions (space, vertical/horizontal location, facings), demand 

effects (elasticity, cross-space, position), and constraints (integer facings, capacity, bounds). They 

stressed that optimization-grade models still exceed the capabilities of commercial software. 

Hübner et al. (2020) further argued that two-dimensional shelves are intrinsically integrated— 

encompassing selection, quantity, assignment, and arrangement—and that one-dimensional 

heuristics are inadequate once vertical blocks and adjacencies become relevant. 

The computational complexity of assortment optimization was clarified by Aouad et al. (2018), 

who proved tight hardness-of-approximation results under ranking preference models. Their 

reduction from the maximum independent set problem demonstrated that even approximate 

solutions can be intractable in the general case. However, simple revenue-ordered assortments also 

provide the best possible guarantees with respect to price parameters. This complexity lens helps 

explain why scalable heuristics and matheuristics dominate practice. 

As instance sizes increased, the literature shifted toward model reduction, exact–approximate 

hybrids, and matheuristics. Leitner et al. (2024) showed that compact formulations and 

decomposition techniques can quickly close gaps in assortment MILPs, although exactness 

deteriorates beyond a few hundred items, making matheuristics and rounding essential. 

Accordingly, a two-phase mathematical approach for integrated assortment–shelf allocation 

achieved near-optimal solutions, with an average gap of less than 3.8%. The optimized plan 

concentrated profit in high-visibility areas, where the most visible families accounted for about 

80% of total store profit (Abbaszadeh et al., 2025) 

Brandimarte et al. (2024) advocated a reduce-and-solve matheuristic, solving manageable 

subproblems first and then invoking a commercial solver to keep industrial-scale problems 

tractable. Heger and Klein (2024) confirmed this trend by classifying contributions according to 

customer models, constraints, and solution concepts, and highlighting the rise of hybrid approaches 

that blend metaheuristics with MIP-based repair. In parallel, product portfolio research in supply 

chains has shifted beyond decisions to delete or revitalize products to focus on proactive 

performance preservation. Abbasnia et al. (2025) applied Inverted DEA sensitivity analysis to 

identify strategic items and derive improvement trajectories, showing that small input reallocations 
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(e.g., 5%) can significantly enhance both margin and efficiency. Such approaches complement 

assortment optimization by informing which product groups should remain prioritized when space 

or capital constraints become binding (Abbasnia et al., 2025). 

Where assortment is central, the realism of choice models is crucial. While the multinomial 

logit (MNL) model remains popular for its tractability, nested and mixed logit models, as well as 

Markov chain choice models (MCCM), capture richer substitution patterns (Désir et al., 2024). 

Agarwal et al. (2019) bridged these approaches with their "MNL-Bandit," a dynamic learning 

algorithm that simultaneously estimates choice parameters and maximizes revenue. Tested on 

hundreds of products, their policy achieved near-optimal regret bounds and avoided the poor 

performance of simpler explore-then-exploit methods, underscoring the feasibility of adaptive, 

data-driven assortment planning. 

On the distributionally robust side, Yu et al. (2024) framed assortment optimization as a worst-

case CVaR or chance-constrained problem over a moment set, deriving SOCP characterizations. 

They demonstrated that revenue-ordered solutions remain effective under realistic conditions, 

delivering substantial revenue increases and more stable worst-case performance. Most recently, 

Hense and Hübner (2022) extended the modeling horizon to omni-channel retail. Their integrated 

assortment–space–inventory model incorporated both in-channel and cross-channel substitution 

under stochastic, space-elastic demand. In test cases with up to 80 items across store and webshop, 

they found that coordinated omni-channel planning could significantly raise profits, with in-

channel substitution effects typically dominating. Their heuristic consistently outperformed 

benchmarks and delivered near-optimal solutions—marking a first step toward tactical omni-

channel planogramming. 

Beyond static planograms, the field has expanded into online and personalized settings. Chen 

et al. (2024) studied recommendation-at-checkout with add-on items and demonstrated that a 

robust protection-in-expectation policy achieved provable competitive ratios under worst-case 

arrivals, performing strongly in large-scale simulations. For clarity, we complement this review 

with a summary table (Table 1) synthesizing the key studies discussed, along with a compact 

glossary of terms and a brief caption for the accompanying figure. 

In summary, the literature demonstrates a clear evolution—from early empirical studies of 

space elasticity, to integrated assortment–shelf models, and more recently to robust and omni-

channel formulations. Over time, the field has progressed from descriptive observations to 

prescriptive optimization, and now toward scalable, hybrid, and data-driven algorithms. While 

state-of-the-art research highlights the power of integrated, stochastic, and robust models, 



 

 
 

Industrial Management Journal, Volume 18, Issue 2, 2026 

 

 
 

 

8 

commercial tools still lag behind, leaving significant opportunities to bridge the gap between theory 

and practice in retail shelf-space and assortment planning. 

Despite the progress, the existing literature still reveals several gaps at the interface of 

assortment optimization and shelf-space planning. Many models either abstract away from 

practical feasibility constraints (e.g., group-level bounds, total store capacity) or rely on solution 

methods that do not scale reliably to supermarket-sized instances. Moreover, although 

metaheuristics and matheuristics have gained traction, relatively little work has focused on hybrid 

approaches that explicitly balance exploration with feasibility repair and targeted local 

improvement. Our study addresses this gap by developing a memetic algorithm that operates at the 

category–shelf level, blending genetic exploration with repair and diversification to enforce 

feasibility, and hill-climbing for local refinement. Unlike prior models, our formulation integrates 

direct margins, substitution-driven recapture, and space-elastic demand within realistic capacity 

and grouping bounds—producing high-margin assortments that are both computationally efficient 

and operationally credible. In doing so, we position our contribution at the intersection of 

theoretical rigor and practical decision support for large-scale grocery retailing. 

Table 1. Chronological map of the literature linking empirical space effects to integrated, 

substitution-aware assortment and 2D shelf-space optimization—highlighting demand models, 

constraints, algorithms, and the specific takeaway for a scalable, robust pipeline 

Referen
ce 

Focus 
Choice/Dema

nd Model 
Substit
ution 

Space 
Elasticit

y/ 
Position 

Key 
Constraints 

Algorithm/
Method 

Scale/Co
ntext 

Key Finding 

Agarwal 
et al. 

(2019) 

MNL-
bandit 

MNL 
(learning) 

Yes — 
Inventory/ca

pacity 
(implicit) 

UCB bandit 
Online 
large-
scale 

Regret near 
lower bounds; 

learn assortment 
on the fly. 

Anderso
n and 
Amato 
(1974) 

Integrated 
selection+ 

space 

Empirical/An
alytical 

Yes 
(brand-
level) 

Own 
Shelf 

capacity 
Optimizatio
n (early OR) 

Small 
analytica

l 

Early joint 
treatment of 

assortment and 
display space. 

Aouad 
et al. 

(2018) 

Hardness/ 
approxima

tion 

Rank-based 
choice 

Yes — — 
Complexity 

results 
— 

The assortment 
problem is often 

NP-hard to 
approximate 

tightly. 
Baron et 

al. 
(2011) 

Inventory-
dependent 
demand 

Inventory-
sensitive 

Partial Own 
Service 

levels; shelf 
stock 

Analytical + 
algorithms 

Category
-scale 

Ignoring stock 
dependence 
harms profit. 

Bianchi-
Aguiar 
et al. 

(2021) 

Shelf-
space 
review 

Survey — — 
Min/max; 
capacity; 
position 

Synthesis — 

Codifies 
decision 

types/effects/co
nstraints; urges 

scalability. 

Brandim
artet al. 
(2024) 

Model 
reduction 

+ 
metaheuri

stic 

General retail — — 
Problem-
specific 

Reduce-
and-solve 

(MIP repair) 

Industria
l 

Reducing 
instances and 
then repairing 

with MIP 



 

 
 
Integrated Assortment–Shelf Optimization under Substitution…| Ebrahimi Kordler, et al. 

 

 
 

 

9 

Referen
ce 

Focus 
Choice/Dema

nd Model 
Substit
ution 

Space 
Elasticit

y/ 
Position 

Key 
Constraints 

Algorithm/
Method 

Scale/Co
ntext 

Key Finding 

improves both 
time/quality. 

Chen et 
al. 

(2024) 

Check out 
the add-on 
assortment 

Choice + 
inventory 

Yes — 
Inventory 
protection 

Robust 
online 
policy 

Large-
scale 
sims 

Robust 
protection-in-
expectation 

boosts worst-
case 

performance. 

Curhan 
(1972) 

Empirical 
space 

elasticity 
Empirical Implicit 

Own 
(diminis

hing 
returns) 

— 
Field study; 
regression 

Superma
rket 

categorie
s 

More space 
boosts sales 

with 
diminishing 

returns, 
exhibiting 

heterogeneous 
effects. 

Désir et 
al. 

(2024) 

Robust 
assortment 

under 
MCCM 

MCCM Yes  Uncertainty 
sets 

Max–min 
duality + 

algos 

Large 
choice 

sets 

Efficient robust 
algorithms 

under MCCM. 

Drèze et 
al. 

(1994) 

Positionin
g & space 
elasticity 

Empirical Implicit 
Own + 
Position 
(H/V) 

— 
Field 

experiments 

Multiple 
categorie

s 

Horizontal/verti
cal position 

often dominates 
extra facings. 

Farias et 
al. 

(2013) 

Nonparam
etric/ 
robust 

revenue 

Nonparametri
c choice 

Yes — — 
Robust 

optimization 
Data-

limited 

Worst-case 
revenue over 

consistent 
choices; reduces 

overfitting. 
Geismar 

et al. 
(2015) 

2D shelf 
revenue 

Demand with 
vertical 

Partial 
Own + 
Vertical 

Rectangular 
blocks 

IP + graph 
reduction 

Hundred
s 

Vertical effects 
& 2D packing 

are critical. 
Hansen 

and 
Heinsbr

oek 
(1979) 

Selection+
space in 

supermark
ets 

Analytical Implicit Own 
Capacity; 

integer 
facings 

Mathematic
al 

programmin
g 

Store 
category 

Selection and 
facings are 
intertwined 
decisions. 

Hansen 
et al. 

(2010) 

Shelf 
allocation 
methods 

Space-elastic 
profit 

Implicit 
Own + 
Position 

Capacity; 
integer 
facings 

Heuristics 
vs 

metaheuristi
cs 

Retail-
scale 

Metaheuristics 
outperform 

basic heuristics 
and 

linearization 
tricks. 

Hense 
(2022) 

Category 
manageme
nt trends 

Conceptual/e
mpirical 

Partial Own 
Policy/role 
constraints 

Review/case
s 

Retail 
practice 

Role-based 
category rules 
shape feasible 

space/assortmen
t. 

Hübner 
and 

Schaal 
(2017a) 

Integrated 
assortment

+ space 
Space-elastic Yes 

Own + 
Cross-
space 

Min/max; 
capacity 

MIP + 
heuristics 

Large 
categorie

s 

Joint selection + 
facings+position

ing improves 
outcomes. 

Hübner 
and 

Schaal 
(2017b) 

Stochastic, 
space-
elastic 

Stochastic 
demand 

Yes Own 
Capacity; 

integer 
MIP + 

sampling 
Retail-
scale 

Uncertainty 
changes optimal 
facings/arrange

ments. 
Hübner 

et al. 
(2020) 

2D 
shelves—

Space-elastic 
+ position 

Partial 
Own + 
Position 

2D 
rectangular; 
adjacency 

Optimizatio
n 

frameworks 

Large 
planogra

ms 

Selection, 
quantities, 

assignment, and 
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Referen
ce 

Focus 
Choice/Dema

nd Model 
Substit
ution 

Space 
Elasticit

y/ 
Position 

Key 
Constraints 

Algorithm/
Method 

Scale/Co
ntext 

Key Finding 

integrated 
view 

arrangement are 
inseparable. 

Hwang 
et al. 

(2005) 

Space+ 
inventory
+ position 

Demand with 
position 

Partial 
Own + 
Vertical 

Inventory, 
planogram 

GA + 
gradient 

Category
-scale 

Joint space-
inventory-
location 

improves profit 
vs. siloed. 

Kök and 
Fisher 
(2007) 

Assortmen
t under 

substitutio
n 

MNL & 
variants 

Yes — 
Cardinality/c

apacity 

Heuristics + 
decompositi

on 

Hundred
s of 

SKUs 

Scale-aware 
assortment 

under 
substitution; 

industrial 
evidence. 

Leitner 
et al. 

(2024) 

Exact 
assortment 
w/ product 

costs 

MNL-like 
MILP 

Implicit — 
Capacity; 

cost 

Exact + 
decompositi

on 

Large 
MILPs 

Exact works to 
a point; hybrids 
are needed at 

scale. 

Lotfi et 
al. 

(2011) 

Multi-
objective 

shelf 
planning 

Aggregate Implicit Own 
Budget; 

freshness; 
capacity 

Goal 
programmin

g 

Category
-scale 

Trade-offs 
profit vs. 
service. 

Murray 
et al. 

(2010) 

2D layout 
+ pricing 

Demand with 
layout 

Partial 
Own + 
Position 

2D blocks; 
orientation 

MINLP 
Dozens–
hundreds 

2D planogram 
realism matters 

for revenue. 

Yu et al. 
(2024) 

Data-
driven 
robust 

assortment 

MNL (DRO / 
CVaR) 

Yes 
 
 

— 

Moment/CV
aR 

constraints 

SOCP; data-
driven 

Real 
datasets 

Robustness 
improves lower-

tail revenue 
with a small 
mean loss. 

Abbasza
deh et 

al. 
(2024) 

Integrated 
assortment

–shelf 
optimizati

on 

Space-elastic 
demand 

Yes 
2D 

layout 

Shelf, 
product, and 

category 
bounds 

Two-phased 
metaheuristi
c (column 

generation + 
single-shelf 
optimization

) 

Retail-
scale 
(real 
data) 

Hybrid 
metaheuristic 

achieved <3.8% 
optimality gap; 
high-visibility 
items drove 

~80% of profit. 

Notes: "own" = effect of a product’s own shelf space on its own sales 

Materials and Methods 

Problem definition and Solution method 

This paper addresses the problem of maximizing the expected profit from arranging product variety 

on retail shelves. As a combinatorial and NP-hard problem, its inherent complexity —compounded 

by numerous physical and variety-related constraints—renders exact solution approaches 

infeasible for real-world scenarios (Heger & Klein, 2024). Hybrid and multi-stage metaheuristic 

frameworks have recently gained significant attention (Bahrami, 2025). To tackle this 

computational challenge, we propose a memetic algorithm hybridized with Iterated Local Search 

(ILS). The choice of a hybrid metaheuristic approach, which combines the global search 
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capabilities of memetic algorithms with the local intensification of ILS, is motivated by its proven 

effectiveness in solving complex NP-hard problems with intricate constraint structures.  

The integrated assortment–shelf optimization problem involves multiple stakeholders with 

interconnected interests. Category managers seek to maximize profit while balancing variety 

against shelf constraints; our framework provides optimal SKU selection and facing allocation 

under realistic bounds. Store operations managers prioritize planogram feasibility, addressed 

through strict enforcement of capacity constraints. Retail executives focus on overall store 

profitability; the proposed model quantifies the profit impact of constraint relaxation and supports 

scenario planning. Consumers benefit indirectly, as the algorithm preserves variety and prevents 

over-rationalization of staple categories. From a managerial perspective, the framework serves as 

a decision support tool that reduces reliance on intuition and enables data-driven trade-off analysis. 

For each item 𝑖, the following data is available: base demand share 𝑠𝑖 , remaining profit margin 

in percent 𝑚𝑖, consumer price 𝑝𝑖, shelf width 𝑤𝑖, space elasticity 𝜖𝑖 , assortment level (e.g., 

categories such as ‘Chocolate’ or ‘Canned Fruits’). Substitution effects between items are modeled 

using a sparse matrix 𝑃𝐼𝐴𝑈 = {𝑝𝑖𝑗 }, where each element 𝑝𝑖𝑗  denotes the probability that the demand 

for an off-the-shelf item 𝑗 is transferred to an on-shelf item 𝑖. This probability 𝑝𝑖𝑗  is computed 

based on the following formula: 

𝑝𝑖𝑗 =
Feature Similarity(𝑖, 𝑗) × Total Sales Volume(𝑖)

Number of Stores with Sales(𝑖)
                                           (1) 

Here, Feature Similarity (𝑖, 𝑗) quantifies shared attributes —such as brand, color, dimensions, 

and quality level —between items 𝑖 and 𝑗. Total Sales Volume (𝑖) represents the aggregate sales 

of the item 𝑖, reflecting its market popularity. The Number of Stores with Sales (𝑖) serves as a 

normalization factor, indicating the market breadth of the item 𝑖. This approach integrates both 

intrinsic product characteristics and observed market presence to estimate the likelihood of 

substitution. 

Shelf-space elasticity is incorporated to capture the responsiveness of sales to the amount of 

display allocated. Following Curhan (1972), it is defined as the ratio of the percentage change in 

unit sales to the percentage change in shelf space: 

𝐸 =
Δ𝑄/𝑄

Δ𝑆/𝑆
 (2) 
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A large meta-analysis reports an average elasticity of approximately 0.17, with substantial 

heterogeneity across categories—lowest for commodities, higher for staples, and highest for 

impulse items (Eisend, 2014). Field studies further confirm that location and space effects are non-

linear, exhibiting diminishing returns once sufficient facings are allocated (Dreze et al., 1994). In 

line with this evidence, we calibrated category-level elasticities within the empirically observed 

band (≈0.13–0.29): assigning lower values to basic commodities such as flour, sugar, and salt; 

moderate values to staples like rice and tomato paste; and higher values to impulse-oriented 

categories such as chocolate, potato chips, and soft drinks. 

A solution 𝑌 = {𝑌L} assigns to each assortment level L a list of items placed on that level. Each 

chromosome gene corresponds to one level, and its content is the list of items selected for that 

level. Facings are not predetermined: the number of faces for an item is simply the number of times 

it appears in that list. In this way, facings emerge endogenously during optimization rather than 

being externally imposed. 

The profit function has two components. For each item 𝑖 selected on the shelf, we define: 

base𝑖 = 𝑚𝑖  𝑝𝑖 𝑓𝑖
𝜖𝑖  (3) 

The direct profit is: 

𝑅1 = ∑ base𝑖  𝑠𝑖

𝑖∈𝑌

 (4) 

Moreover, the substitution profit is: 

𝑅2 = ∑ ∑ base𝑖  𝑠𝑗  𝑝𝑖𝑗

𝑗∉𝑌
𝑖∈𝑌

 (5) 

The objective is therefore: 

max 
𝑌

  𝑅(𝑌) = 𝑅1 + 𝑅2 (6) 

To ensure planogram feasibility, the optimization is subject to the following capacity 

constraints: 

1. Level constraints: 
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MinWidthAssort𝐿 ≤ ∑ 𝑤𝑖 ≤ MaxWidthAssort𝐿

𝑖∈𝑌𝐿

 (7) 

2. Store constraint: 

∑ ∑ 𝑤𝑖 ≤ MAX_STORE_WIDTH

𝑖∈𝑌𝐿𝐿

 (8) 

Memetic Framework with ILS 

The proposed memetic framework combines global search with local exploitation through hill 

climbing embedded in an ILS scheme. The main steps are here (Figure 1): 

 

Figure 1. Flowchart: Memetic Algorithm 

Having specified the objective function and capacity constraints, we address this NP-hard 

problem using a memetic algorithm (Neri et al., 2011) that integrates genetic exploration—via 

crossover and mutation—with targeted local refinement through Iterated Local Search (ILS). This 

hybrid approach leverages the global search capabilities of evolutionary methods while 
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intensifying promising regions of the solution space. To maintain diversity and avoid premature 

convergence, the framework incorporates deduplication and diversification mechanisms during 

pool formation. An adaptive stopping criterion is employed, terminating the search when the best-

of-generation profit remains unchanged over a predefined number of iterations. 

Initialization 

A two-phase generator ensured that all solutions were feasible: (1) for each level, random items 

were added until the minimum width was reached, without exceeding maxima, and (2) the 

remaining store capacity was filled with random items across levels until the global width limit 

was nearly saturated. 

We generate a diverse set of feasible chromosomes before the memetic cycle begins. Each 

chromosome 𝑌 = {𝑌𝐿} maps assortment levels 𝐿to item lists. The constructor is repair-light and 

enforces feasibility during construction, ensuring that individuals are valid at birth. 

Inputs and Notation 

 For item 𝑖: width 𝑤𝑖, level 𝐿(𝑖), demand share 𝑠𝑖, price 𝑝𝑖, margin 𝑚𝑖, elasticity 𝜖𝑖. 

 For each level 𝐿: lower/upper width bounds (MinWidth𝐿 , MaxWidth𝐿). 

 Global store capacity: MAX_STORE_WIDTH. 

Define: 

 𝑊(𝑌𝐿) = ∑ 𝑤𝑖𝑖∈𝑌𝐿
, where 𝑊(𝑌𝐿)is the total shelf width occupied by items assigned to level 

𝐿. Similarly, 𝑊tot(𝑌) = ∑ 𝑊(𝑌𝐿),
𝐿

where 𝑊tot(𝑌)is the total shelf width used across all levels in 

solution 𝑌. 

Phase 1 — Satisfy all per-level minima 

For each level 𝐿, we randomly sample items 𝑖 ∈ ℐ𝐿(the pool of items assigned to level 𝐿) and 

greedily accept any item that maintains feasibility and contributes toward reaching the MinWidth𝐿 . 

Formally, if the current partial solution is 𝑌and candidate 𝑖 ∈ ℐ𝐿 , we accept 𝑖 if: 

𝑊(𝑌𝐿) + 𝑤𝑖 ≤ MaxWidth𝐿 , 𝑊tot(𝑌) + 𝑤𝑖 ≤ MAX_STORE_WIDTH                   (9) 
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Phase 2 — Pack remaining capacity (near-cap fill) 

After all levels meet their minimum width requirements, the constructor opportunistically adds 

items across levels to approach the MAX_STORE_WIDTH without breaching any per-level 

maxima. At each step, it selects a random level 𝐿and a random candidate 𝑖 ∈ 𝐼𝐿 , accepting 𝑖only if 

all feasibility checks remain satisfied; otherwise, it resamples. The process terminates once the 

residual capacity MAX_STORE_WIDTH − 𝑊tot(𝑌) falls below a small tolerance 𝜏. 

Mutation 

We use a two-by-two, width-preserving mutation designed to maintain shelf balance while 

exploring new item combinations. 

1. Random removals. Uniformly sample two distinct assortment levels 𝐿𝑎 , 𝐿𝑏. From each, 

randomly select one item—denoted 𝑖𝑎 ∈ 𝐿𝑎and 𝑖𝑏 ∈ 𝐿𝑏—and mark them for removal. Let 

the target width be 𝑊⋆ = 𝑤𝑖𝑎
+ 𝑤𝑖𝑏

. 

2. Random insertions under tolerance. Uniformly sample two candidate items 𝑗1, 𝑗2from the 

entire feasible item pool (with no level restriction). Accept this pair if their combined width 

falls within the tolerance band.ɣ denote the mutation tolerance. 

∣  (𝑤𝑗1
+ 𝑤𝑗2

) − 𝑊⋆  ∣≤ ɣ × max (𝑊⋆, 𝜀) (10) 

With 𝜀 a small positive constant (numerical guard). If the candidate pair violates the tolerance 

condition, a new pair is resampled—up to 10 attempts. 

3. Constraint screening (hard feasibility). If a width-feasible pair is found, tentatively apply the 

move {𝑖𝑎 , 𝑖𝑏} → {𝑗1, 𝑗2}and check all constraints: 

 Per-level width bounds: for every level 𝐿, MinWidth𝐿 ≤ ∑ 𝑤𝑖 ≤ MaxWidth𝐿𝑖∈𝑌𝐿
. 

 Per-level item-count bounds (if active). 

 Global store width: ∑ ∑ 𝑤𝑖 ≤ MAX_STORE_WIDTH𝑖∈𝑌𝐿𝐿 . 

4. Rollback on failure. If no candidate pair satisfies both the tolerance and the constraint 

screening within 10 attempts, the mutation is cancelled and the removed items {𝑖𝑎 , 𝑖𝑏} are 

restored. The individual remains unchanged. 
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Crossover 

Crossover is performed at the assortment-level granularity (a one-cut operation across levels), 

which may transiently disturb level widths. To keep the algorithm repair-light yet feasible, we 

apply a simple, in-group post-adjustment immediately after crossover: 

1. If a level falls below its minimum width, randomly add items from that level until the 

MinWidth𝐿  is satisfied, provided that global width and item count/facing caps are not 

violated. 

2. If a level exceeds its maximum width, randomly remove items from that level until the 

MaxWidth𝐿is met. 

3. After these per-group adjustments, we re-check the global store width and the item 

repetition cap. If the child solution remains infeasible, the crossover outcome is rejected 

and the parent is retained. 

Deduplication 

To prevent clones from dominating and to sustain exploration in Hill-Climbing, we canonicalize 

each candidate and retain only the first occurrence of each unique structure. If uniqueness falls 

below a predefined diversity threshold, the population is refilled up to a minimum size. This serves 

as a pragmatic mechanism for maintaining population diversity (Morrison & De Jong, 2001). 

Placing deduplication before hill climbing focuses the local-search budget on unique, high-quality 

representatives rather than expending effort on near-identical clones. This approach reduces 

redundant evaluations, improves coverage of distinct basins of attraction, and yields more stable 

improvements per iteration. 

Hill-Climbing (ILS local search) 

We apply hill-climbing (Russell & Norvig, 2010) to improve a given feasible solution 𝑌. Let the 

neighborhood of 𝑌 be defined by two operators: 

1. 1→1 replacement: 

Select 𝑖 ∈ 𝑌, remove it, and insert 𝑗 ∉ 𝑌. The new solution is: 

𝑌′ = (𝑌 ∖ {𝑖}) ∪ {𝑗} (11) 

2. 1→2 replacement: 
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Select 𝑖 ∈ 𝑌, remove it, and insert two items 𝑗1, 𝑗2 ∉ 𝑌. The new solution is: 

𝑌′ = (𝑌 ∖ {𝑖}) ∪ {𝑗1, 𝑗2} (12) 

Each neighbor 𝑌′is only considered if it is feasible, i.e., 

∀𝐿:  MinWidth𝐿 ≤ ∑ 𝑤𝑘 ≤ MaxWidth𝐿

𝑘∈𝑌𝐿
′

, ∑ ∑ 𝑤𝑘 ≤ MAX_STORE_WIDTH

𝑘∈𝑌𝐿
′𝐿

 
(13) 

Let 𝑅(𝑌)denote the profit function (from earlier). Then: 

𝑌𝑡+1 = {
𝑌′, if 𝑅(𝑌′) > 𝑅(𝑌𝑡),  𝑌′ ∈ 𝒩(𝑌𝑡) feasible,
𝑌𝑡 , otherwise.

 (14) 

This process is repeated until one of the following termination conditions is met: 

 No improving neighbor is found after HC_LOCAL_TRIES = 5 attempts per removed item, 

or 

 HC_GLOBAL_PATIENCE = 10 consecutive non-improving steps occur. 

Diversity control 

To mitigate genetic drift and premature convergence in this multimodal search, we maintain 

population diversity throughout the run. This preserves exploration across distinct regions of the 

solution space, yielding more stable and higher-quality solutions. In our implementation, diversity 

is sustained through elitism, fitness-proportionate roulette selection, and duplicate elimination with 

diversity floor maintenance. The latter two mechanisms are explained in detail below. 

Fitness-proportionate (roulette-wheel) selection: Parents are sampled with probability 

proportional to their fitness, 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑗

(or 𝑝𝑖 =
𝑓𝑖 − 𝑓min + 𝜀

∑ (𝑓𝑗 − 𝑓min + 𝜀)
𝑗

 for numerical stability) 
(15) 

which biases selection toward higher-fitness individuals while retaining a nonzero probability 

for all candidates (Shakir Hameed et al., 2023). 
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Termination 

We employ an adaptive stabilization rule: the run terminates as soon as the best-of-generation profit 

has remained unchanged for a predefined number of consecutive iterations. A hard iteration cap is 

maintained only as a safety fallback. 

Results 

Computational results and Parameter settings 

For the empirical study, we selected one branch of the Ofoq Koorosh chain stores (OfoqKourosh, 

2025), located in Tehran, with a floor area of approximately 250 m². Within this store, the dry-food 

warehouse was the focus of analysis. A total shelf length of 21,000 cm was considered as the global 

capacity distributed across 39 product categories. The product categories include Beverages, 

Snacks & Sweets, Staples and Dry Goods, Canned and Preserved Foods, Condiments & Cooking 

Ingredients, Breakfast & Spreads, Pasta & Grains. 

The sales and inventory data for these categories cover October 2022 to September 2023. For 

space elasticity, we used the empirically observed band (≈0.13–0.29) described in the 

methodology: lower values for commodities (e.g., flour, sugar, salt), moderate values for staples 

(e.g., rice, tomato paste), and higher values for impulse categories (e.g., chocolate, potato chips, 

soft drinks). Substitution inputs were derived from product attributes and sales-based relationships, 

as outlined in the methodology. Category-level minimum and maximum width bounds were set 

using managerial experience and store-specific constraints. 

Algorithmic settings followed the implementation described earlier: mutation tolerance of ɣ = 

±10% (maximum 10 attempts); HC_LOCAL_TRIES = 5 and HC_GLOBAL_PATIENCE = 10 for 

hill climbing; immigrant rate 0.05; and a deduplication floor of 50%. Hill climbing proceeds by 

selecting a random non-empty level and attempting to remove one item, with the choice of 

removable items capped at 50 tries. It terminates when no improvement is found in 10 consecutive 

outer attempts, each allowing up to 5 local replacement trials. Memetic termination is adaptive: the 

run stops if the best-of-generation profit remains effectively unchanged for 20 consecutive 

iterations; otherwise, it continues until a hard cap of 5,000 iterations is reached. In practice, we first 

experimented with fixed 100-generation runs and gradually increased the budget, observing that 

performance stabilized within this range. We also tested several population sizes (10, 20, 30, and 

40) and found that 20 or 30 individuals offer a good balance between diversity and runtime. The 

combination of duplicate elimination and immigrant injection maintained population diversity, 
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avoided stagnation in local optima, and supported stable convergence under the specified stopping 

rules. Table 2 summarizes the parameter configuration adopted for the Memetic/ILS algorithm in 

this study. 

Table 2. Memetic/ILS parameter configuration 

Parameter Setting 

Generations <=5,000 

Population 20 or 30 

Global store width 21,000 

Mutation tolerance ±10%, max 10 attempts 

Dedup keep ratio 50% 

Immigrant rate 5% 

Selection Top-5 + Elite + 30% Roulette + Fill 

The empirical results are reported for four algorithmic configurations using real retail data 

covering 39 product categories, with a global shelf capacity of 21,000 cm. The experiments 

examined the impact of population size and category-level maximum bounds on solution quality, 

allocation patterns, and convergence behavior. 

The computational results are summarized across four experimental runs in Table 3. Run 1 

employed a population of 20 with original minimum–maximum bounds, while Run 2 increased the 

maximum by ×1.5 for categories initially capped below 1000 cm. Run 3 used a population of 30 

with original bounds, and Run 4 used a population of 30 with increased bounds. As shown in Table 

3, moving from Run 1 to Run 3 (20→30 individuals, original bounds) yields a modest objective 

gain (+17,130; ≈+0.6%) at the cost of longer compute time (~14→16 hours). Relaxing maxima at 

population 20 (Run 2) delivers a larger improvement over Run 1 (+186,367; ≈+6.2%) with a 

smaller number of generations (3,718→2,817) and comparable runtime. The best objective value 

is achieved in Run 4 (3,249,058) under population 30 with relaxed maxima, albeit with the most 

extended runtime (~29 hours) and the highest number of generations (4,089). These results 

highlight the trade-off between exploration (population size) and constraint flexibility (relaxed 

maxima), on the one hand, and solution quality and computational cost, on the other. Accordingly, 

subsequent analyses focus on the population-30 configurations (Runs 3–4) as they provide the most 

stable and superior outcomes. 

Table 3. Summary of computational performance across four experimental runs 

Number of runs Seconds Hours Number of generations Profit 

Run 1 51,652 14 3718 3,020,329 

Run 2 53,178 15 2817 3,206,696 

Run 3 58,857 16 2855 3,037,459 

Run 4 103,852 29 4089 3,249,058 



 

 
 

Industrial Management Journal, Volume 18, Issue 2, 2026 

 

 
 

 

20 

Allocation outcomes of Run 3 and Run 4 are presented in Figures 2a and 2b, respectively. 

Under the original bounds (Figure 2a), impulse-oriented categories, such as Chocolate and Soft 

Drinks, reached their maxima, while staples (e.g., Flour, Salt) remained near their minima. After 

relaxing the maximum (Figure 2b), additional space was absorbed by Jam & Preserves, Sauces & 

Dressings, and Non-Alcoholic Beverages, resulting in both an increase in the number of distinct 

SKUs and a rise in total facings. 

 

Figure 2. Category-level shelf allocation under the 30-individual configuration. (a) Original min–

max bounds. (b) Relaxed maxima scenario. 

The convergence behavior of the 30-individual population is reported in Figures 3a and 3 b. 

Under original bounds (Figure 3a, Run 3), the best profit curve stabilizes around 3.04M after 

approximately 2,855 generations. Under relaxed maxima (Figure 3b, Run 4), the algorithm 

converges to 3.25M after 4,089 generations. Comparing the two scenarios, relaxing category 

maxima improved the final best profit and yielded smoother and slightly superior convergence. 
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Figure 3. Convergence for population = 30. (a) Original min–max bounds. (b) Relaxed maxima 

scenario. 

Cumulative coverage analysis under original bounds (Figure 4a) highlights an intense 

concentration of shelf allocation. When categories are sorted by their final allocated width, the 

curve shows that roughly 20% of the 39 categories (approximately eight groups) capture around 

70% of the total shelf space. Elastic and impulse-driven groups, such as those in the Chocolate, 

Soft Drinks, and Tea sectors, dominate the allocation. At the same time, staple and commodity 

categories with lower profits (e.g., Flour, Salt) remain clustered at the lower end. This pattern 

confirms the existence of a pronounced head–tail structure, where a minority of categories absorb 

most of the capacity, underscoring their strategic importance in retail space planning. Cumulative 

coverage under relaxed maxima (Figure 4b) displays a slightly flatter curve compared to the base 

case, indicating reduced concentration. With higher upper bounds, mid-tier categories, such as Jam 

& Preserves, Sauces & Dressings, and Non-Alcoholic Beverages, absorb additional space, thereby 

distributing coverage more evenly across these groups. Although the top approximately 20% of 

categories still account for a dominant share, the relative contribution of secondary groups 

increases— suggesting that flexibility in maximum bounds can enhance variety and balance 

without undermining profit concentration in high-elasticity groups. 
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Figure 4. Cumulative coverage for population = 30. (a) Original min–max bounds. (b) Relaxed 

maxima scenario. 

Table 4 summarizes the allocation outcomes for the 30-individual configuration under the 

original min–max bounds. Results show that highly elastic and impulse-oriented categories 

approach their maximum width allocations and exhibit high average facings, reflecting strong 

responsiveness to shelf space. Conversely, basic commodities—such as Flour, Salt, and Sugar—

remain close to their minima with low SKU variety and facings, confirming their limited 

contribution to incremental profit. Mid-range categories (e.g., Pasta, Biscuits & Cookies, Cooking 

Oil) occupy moderate allocations consistent with their elasticity levels. Overall, this table 

demonstrates that the optimal planogram under the original bounds is highly skewed toward elastic 

categories, while commodity categories are underrepresented. Table 5 reports the results for the 

30-individual configuration when maximum category bounds are relaxed. Compared to the normal-

bounds scenario, several mid-tier categories—such as Jam & Preserves, Sauces & Dressings, 

Canned Vegetables, and Non-Alcoholic Beverages—occupy significantly more space, resulting in 

both an increase in the number of unique SKUs and the average facings. This reallocation enhances 

variety and shelf visibility across a broader range of groups, while maintaining high-elastic 

categories (e.g., Tea, Soft Drinks) near their maximum levels. Commodities remain constrained at 

low levels, indicating limited responsiveness to market space. Thus, the relaxed-bounds scenario 

provides a more balanced allocation, enhancing category variety without diminishing the 

dominance of the most profitable groups. 

 

(a) (b) 
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Table 4. Final allocation outcomes under 30-individual configuration (original min–max bounds) 

Product Category 

Initial 

Numbe

r of 

SKUs 

Minimu

m Shelf 

Width 

(cm) 

Maximu

m Shelf 

Width 

(cm) 

Final 

Allocate

d Width 

(cm) 

Unique 

SKUs 

Selecte

d 

Total 

SKUs 

Selected 

(including

 repeated 

facings) 

Averag

e 

Facings 

per 

SKU 

Biscuits & Cookies 152 700 2000 753.9 39 135 3.46 

Bottled Water 16 150 400 400 16 57 3.56 

Breakfast Spreads & Nut 

Butters 
17 100 200 198.4 11 21 1.91 

Candies & Toffees 8 100 250 103 4 7 1.75 

Canned Fish 19 120 250 246.8 10 29 2.9 

Canned Fruits 8 80 200 196.5 8 23 2.88 

Canned Vegetables 10 70 200 195 10 26 2.6 

Chewing Gum 40 100 200 197.7 19 38 2 

Chocolate 42 300 600 566 21 163 7.76 

Cooking Oil 29 700 2500 955.5 24 91 3.79 

Crackers 11 80 200 81.4 4 7 1.75 

Dessert & Jelly Mixes 41 150 350 345.7 25 41 1.64 

Flour 16 70 200 198.3 12 16 1.33 

Fruit Juices 131 400 800 798 84 155 1.85 

Honey 14 100 200 199.8 12 28 2.33 

Imported Rice 59 1000 2500 2482 34 62 1.82 

Instant Drink Powders 24 70 150 98.1 5 6 1.2 

Iranian Rice 28 500 800 798.7 21 36 1.71 

Jam & Preserves 33 200 500 498.9 26 71 2.73 

Legumes & Pulses 27 300 600 593.5 26 51 1.96 

Lemon Juice, Verjuice & 

Vinegar 
19 100 250 248.5 18 26 1.44 

Non-Alcoholic Malt Beverages 56 400 1000 998.3 48 132 2.75 

Pasta 33 250 800 778 29 64 2.21 

Pickles 17 120 250 249.5 17 31 1.82 

Popcorn 13 200 600 585.5 11 29 2.64 

Potato Chips 36 600 2000 1054 26 62 2.38 

Ready-to-Eat Canned Meals 21 100 300 300 17 40 2.35 

Salt 11 100 200 187.3 7 14 2 

Salted Preserves 17 150 350 347.7 13 41 3.15 

Sauces & Dressings 23 150 300 296.2 14 44 3.14 

Savory Snacks 43 500 1500 500.5 19 28 1.47 

Sesame Paste & Syrups 9 70 150 149 7 19 2.71 

Soft Drinks 55 600 1500 1494.9 54 243 4.5 

Spaghetti 24 250 800 607.7 17 31 1.82 

Spices & Seasonings 44 100 300 299.9 30 47 1.57 

Sugar & Cube Sugar 42 200 400 397.6 16 29 1.81 

Syrups & Concentrates 7 150 300 300 7 28 4 

Tea 55 700 2000 1997.6 47 172 3.66 

Tomato Paste 7 150 300 299.2 7 30 4.29 

Total 1257 10180 26400 20998.6 815 2173 100.64 



 

 
 

Industrial Management Journal, Volume 18, Issue 2, 2026 

 

 
 

 

24 

Table 5. Final allocation outcomes under 30-individual configuration (relaxed maxima) 

Product Category 

Initial 

Numbe

r of 

SKUs 

Minimu

m Shelf 

Width 

(cm) 

Maximu

m Shelf 

Width 

(cm) 

Final 

Allocate

d Width 

(cm) 

Unique 

SKUs 

Selecte

d 

Total 

SKUs 

Selected 

(including

 repeated 

facings) 

Averag

e 

Facings 

per 

SKU 

Biscuits & Cookies 152 700 2000 705 45 91 2.02 

Bottled Water 16 150 600 281.7 15 41 2.73 

Breakfast Spreads & Nut 

Butters 
17 100 300 299.8 12 31 2.58 

Candies & Toffees 8 100 375 102.5 5 7 1.4 

Canned Fish 19 120 375 374.3 13 44 3.38 

Canned Fruits 8 80 300 297 8 35 4.38 

Canned Vegetables 10 70 300 300 10 40 4 

Chewing Gum 40 100 300 296.3 21 57 2.71 

Chocolate 42 300 900 300 14 94 6.71 

Cooking Oil 29 700 2500 701 24 63 2.63 

Crackers 11 80 300 82.2 5 7 1.4 

Dessert & Jelly Mixes 41 150 525 505 30 60 2 

Flour 16 70 300 172.8 12 14 1.17 

Fruit Juices 131 400 1200 600.8 65 126 1.94 

Honey 14 100 300 299.8 11 41 3.73 

Imported Rice 59 1000 2500 2412.5 31 60 1.94 

Instant Drink Powders 24 70 225 72.1 5 5 1 

Iranian Rice 28 500 1200 890 19 42 2.21 

Jam & Preserves 33 200 750 745.4 27 106 3.93 

Legumes & Pulses 27 300 900 899.5 26 78 3 

Lemon Juice, Verjuice & 

Vinegar 
19 100 375 364.3 19 35 1.84 

Non-Alcoholic Malt Beverages 56 400 1500 1494 45 191 4.24 

Pasta 33 250 1200 353 24 29 1.21 

Pickles 17 120 375 374 17 46 2.71 

Popcorn 13 200 900 399.5 10 19 1.9 

Potato Chips 36 600 2000 614 21 36 1.71 

Ready-to-Eat Canned Meals 21 100 450 450 18 60 3.33 

Salt 11 100 300 232.7 5 18 3.6 

Salted Preserves 17 150 525 522 13 62 4.77 

Sauces & Dressings 23 150 450 448.9 15 68 4.53 

Savory Snacks 43 500 1500 501.5 24 29 1.21 

Sesame Paste & Syrups 9 70 225 225 7 29 4.14 

Soft Drinks 55 600 1500 701.9 41 107 2.61 

Spaghetti 24 250 1200 394.2 13 22 1.69 

Spices & Seasonings 44 100 450 449.4 36 67 1.86 

Sugar & Cube Sugar 42 200 600 307.6 16 19 1.19 

Syrups & Concentrates 7 150 450 447 7 41 5.86 

Tea 55 700 2000 1996.3 43 169 3.93 

Tomato Paste 7 150 450 386.5 7 38 5.43 

Total 1257 10180 32600 20999.5 779 2127 112.62 
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To assess the practical value of the optimization framework, we compared the algorithm's best 

solution (Run 4) against the store's current planogram configuration. The current configuration was 

extracted from the retailer's operational records, reflecting the existing assortment and facing 

decisions implemented in practice. Expected profit for both configurations was computed using the 

same objective function (Eq. 6), ensuring a consistent basis for comparison under identical demand, 

substitution, and elasticity assumptions. 

Table 6 summarizes the comparison across three key metrics: the average number of active 

SKUs per category, the average facings per category, and the expected profit. The optimized 

solution increases the average SKU count by approximately 27% (from 15.7 to 20.0 items per 

category) and total facings by approximately 12%, resulting in a 37% improvement in expected 

profit under the model assumptions. 

Table 6. Comparison of optimized solution versus current store configuration 

Metric Current Memetic/ILS Change (%) 

Avg. SKUs per category 15.7 20 27.4% 

Avg. facings per category 48.8 54.5 11.7% 

Expected profit 2,373,380 3,249,058 36.9%≅37% 

These results suggest that the current store configuration underutilizes available shelf capacity 

in terms of product variety. The optimization algorithm capitalizes on this opportunity by activating 

additional SKUs—particularly smaller-width items that fit within the same shelf space—and by 

leveraging substitution relationships to capture demand that would otherwise be lost when items 

are out of stock. It should be noted that the profit improvement is conditional on the validity of the 

estimated elasticity and substitution parameters; the comparison, therefore, indicates potential 

rather than guaranteed gains. 

Discussion and Conclusion 

In this study, we formulated and solved an integrated assortment–shelf optimization problem that 

simultaneously considers substitution effects and space-elastic demand under realistic retail 

constraints. We developed a hybrid Memetic Algorithm embedded with Iterated Local Search 

(ILS) to address this NP-hard problem. Practically, we constructed a substitution structure based 

on product attributes and sales relationships to capture demand recapture when an item is off-shelf; 

calibrated category-level space elasticities within empirically grounded bands to reflect the 

diminishing returns of facings; encoded feasibility through per-category minimum and maximum 

bounds and a tight global capacity constraint, ensuring that every candidate planogram is 

operationally valid; and designed a memetic search in which chromosomes map items to shelf 
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levels and facings emerge endogenously, incorporating feasibility-first initialization, repair-light 

crossover and mutation, deduplication and diversity control, and local hill-climbing to refine 

promising solutions. The proposed framework was validated using real retail data. 

The hybridization strategy was intentionally designed to balance exploration and 

intensification throughout the search process. The Memetic layer governed population-based 

global exploration through crossover and mutation operators, while the embedded ILS component 

applied local hill-climbing to refine elite individuals at each generation. Mutation operations were 

width-preserving, preventing unbalanced allocations, and crossover was followed by an in-group 

adjustment to maintain per-level bounds. A deduplication mechanism avoided population cloning 

and preserved diversity, while an adaptive stopping criterion terminated the run once objective 

improvement plateaued. This methodological integration provided both computational stability and 

practical realism, making the algorithm suitable for large-scale retail data where exact optimization 

is infeasible.  

The present study proposed a hybrid framework incorporating several innovations that 

collectively distinguished it from prior shelf-space optimization research. First, unlike 

conventional approaches, where facings were explicit decision variables requiring separate 

optimization (Hübner & Schaal, 2017; Hübner et al., 2020)The chromosome encoding allowed 

facings to emerge endogenously through repeated item occurrences within shelf-level genes, 

thereby reducing the solution space dimensionality. Second, the two-phase initialization 

guaranteed 100% feasibility across all runs, unlike previous GA-based methods that relied on 

expensive post-hoc repair (Czerniachowska et al., 2021) .Third, whereas standard mutation 

operators often destabilize constraint satisfaction (Hansen et al., 2010), the width-preserving 2×2 

mutation maintained approximate capacity neutrality within ±10% tolerance bands, eliminating 

repair overhead. Fourth, to prevent premature convergence, the framework incorporated 

deduplication before hill climbing, combined with immigrant injection and diversity floor 

maintenance, thereby focusing computational effort on structurally distinct solutions. Fifth, 

although hybrid metaheuristics had been identified as promising directions (Heger & Klein, 2024), 

few studies have operationalized this integration for shelf-space problems; the Memetic/ILS 

framework explicitly combines evolutionary global search with systematic hill-climbing 

intensification. Together, these design choices enabled the algorithm to achieve high-quality, 

feasible solutions at problem scales where exact solvers were computationally infeasible. 

The computational experiments confirmed that the hybrid Memetic/ILS algorithm achieved 

stable, high-quality solutions across runs. The combination of global exploration and local hill-
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climbing refinement maintained diversity in the solution pool, avoided premature convergence, 

and ensured continuous improvement while preserving feasibility under strict shelf and category 

constraints. This hybrid structure enabled the algorithm to reach near-optimal regions efficiently, 

providing practical convergence within a realistic computational time. 

The observed allocation patterns across product categories are consistent with theoretical 

expectations from the literature. Impulse-driven and high-margin categories reached or approached 

their upper space limits, reflecting their high profit density and strong responsiveness to additional 

shelf exposure. Conversely, low-elasticity staples stabilized near their lower bounds. Relaxing 

category-level constraints resulted in structural changes to assortment balance. Greater flexibility 

in maximum bounds allowed a broader and more balanced distribution of shelf space without 

diminishing overall profitability. This outcome suggests that moderate constraint relaxation 

supports both variety and visual appeal, resulting in more realistic and consumer-friendly shelf 

configurations. 

Pareto analysis confirmed that roughly 20% of SKUs accounted for more than 80% of total 

profit. This aligns with the long-tail phenomenon in assortment planning research, where a small 

number of items dominate category performance. From a managerial standpoint, these results 

support SKU rationalization strategies: retailers can confidently focus on high-performing, high-

elasticity categories while maintaining limited representation of lower-performing staples to 

preserve variety and shopper satisfaction. Thus, an optimal shelf strategy should retain minimal 

representation of low-elasticity commodities for completeness while dedicating incremental space 

to categories that exhibit strong responsiveness and higher marginal returns. 

Beyond the direct optimization outcomes, several implicit findings emerged from the 

computational experiments with important managerial implications. (a) The 6.2% profit 

improvement from relaxing category maxima (Run 2 vs. Run 1) demonstrated that retailers could 

use constraint adjustments as a low-cost strategic lever—rather than expanding physical store 

capacity, simply revising internal category policies unlocked substantial gains. (b) When upper 

bounds were relaxed, mid-tier categories such as Jam & Preserves and Sauces & Dressings 

absorbed significant additional space, indicating that these "middle performers" possessed 

untapped elasticity; retailers typically focused on optimizing top-tier categories, yet the findings 

suggested that mid-tier groups warranted greater attention in assortment reviews. (c) The algorithm 

maintained minimal representation of low-elasticity staples (Flour, Salt) without eliminating them, 

preserving perceived variety and category completeness—addressing a common concern that 

optimization led to over-rationalization. (d) The modest gain (+0.6%) from increasing population 
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size (20→30) at the cost of additional runtime suggested that retailers with tighter planning 

windows could adopt smaller populations with minimal quality loss, enabling faster replanning 

cycles. 

The comparison with the current store configuration revealed actionable insights for retail 

managers. The 37% profit improvement was primarily attributable to two factors: (a) an increase 

in the number of active SKUs (+27%), suggesting that the current planogram underutilized 

available shelf capacity in terms of product variety; and (b) improved exploitation of substitution 

relationships, whereby adding complementary items captured demand that would otherwise have 

been lost. Notably, the optimized solution favored smaller-width items that occupied less shelf 

space per unit, allowing for a higher variety within the same total capacity. From an operational 

perspective, this implied that expanding the store's back-room storage or replenishment frequency 

could have supported the recommended assortment expansion. However, the profit improvement 

was conditional on the model's demand assumptions. Managers were advised to interpret these 

figures as indicative potential rather than guaranteed outcomes and to consider pilot testing on a 

subset of categories before implementing them on a full scale. 

While this study makes meaningful contributions to integrated assortment–shelf optimization, 

several limitations should be acknowledged. From a methodological standpoint, the NP-hard nature 

and scale of the problem (~1,000+ item-level decisions) precluded comparison against exact 

optimal benchmarks. Results may not generalize directly to stores with different layouts, customer 

demographics, or product types such as perishables. Computationally, the best-performing 

configuration required approximately 29 hours, which is acceptable for weekly planning cycles but 

prohibitive for real-time optimization. Finally, the Iranian retail context may limit direct 

transferability to Western or other emerging markets. Despite these limitations, the proposed 

framework provides a robust foundation for practical shelf-space optimization and offers clear 

directions for future research. 

Building on these results, the proposed framework offers strong practical transferability and 

extensibility. It serves as a scenario-planning engine for category managers: by tuning per-category 

ceilings/floors and total capacity, they can quantify assortment breadth, facings, and profit trade-

offs before operational rollout. The demand layer is modular—alternative elasticity and 

substitution estimators (including data-driven or machine-learning updates) can be plugged in 

without redesigning the optimization core.  Looking ahead, the same pipeline can be deployed 

across multi-store networks and omni-channel contexts, enriched with promotion/seasonality 
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calendars or lightweight learning components for continuous parameter refresh—amplifying 

performance while preserving interpretability and operational credibility. 

Future studies could extend the analysis in several directions. One promising avenue is to test 

the algorithm across multiple stores with heterogeneous layouts and consumer demographics, 

enabling richer generalization. Another direction is to incorporate dynamic aspects—such as 

seasonality, promotions, or competitive reactions—into the optimization framework. Advances in 

demand modeling, particularly with machine learning methods, could further improve elasticity 

and substitution estimation, yielding more precise inputs. Finally, real-world implementation 

studies would be valuable for assessing managerial acceptance and the operational feasibility of 

algorithmic recommendations. 
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