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Objective: This study maximizes expected retail profit by jointly optimizing product
assortment and shelf-space allocation, considering substitution effects and space-elastic
demand. The problem’s NP-hardness, compounded by category-level bounds and store
capacity, renders exact methods impractical for large-scale instances. Therefore, we
develop a computationally efficient framework to generate near-optimal shelf plans
aligned with real-world constraints.

Methodology: We propose a hybrid Memetic Algorithm embedded with Iterated Local
Search (ILS), combining evolutionary global exploration with local hill-climbing
refinement. A two-phase initialization ensures every candidate planogram satisfies
capacity constraints. Each chromosome encodes item-to-shelf mappings, with facings
emerging endogenously. Mechanisms, including crossover, mutation, and diversity
control, preserve solution validity and mitigate premature convergence. The framework
was validated using real data from the Iranian retail chain Ofoq Kourosh, encompassing
39 product categories and 21,000 cm of total shelf length.

Results: The algorithm consistently converged toward feasible solutions. Under the
original category bounds, profit reached 3.04 million; relaxing these bounds improved
profit by 6.2% to 3.25 million. Allocation outcomes aligned with demand elasticity:
impulse-driven categories reached upper limits, while low-elasticity staples stabilized
near minima. Pareto analysis confirmed that roughly 20% of categories generated over
80% of profit. Notably, the optimized solution resulted in a 37% increase in profit
compared to the current store configuration.

Conclusion: Results confirm the efficacy of hybrid metaheuristics for complex retail
optimization. The framework consistently achieved near-optimal solutions under realistic
constraints. Managerially, shelf-space allocation should prioritize high-elasticity
categories while maintaining a minimal representation of staples. Future research should
extend this framework to multi-store and omni-channel contexts with dynamic demand
modeling.
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Introduction

In contemporary grocery retail, assortment planning is high-stakes because shelf space is a scarce
and expensive resource, and "a large number of products compete with each other to obtain more
shelf space," making space-aware optimization central to sales and shopper satisfaction (Ziari &
Sajadieh, 2025). At the same time, the operational scale is massive—a typical supermarket carries
roughly 33,000 SKUs—so even small listing/delisting moves ripple across perception, operations,
and performance (Sethuraman et al., 2022). Moreover, adding items indiscriminately can inflate
decision effort, as larger assortments increase the information-processing load and choice
difficulty, which may undermine the gains. Therefore, breadth must be curated to ensure navigation
effort remains manageable (Pham et al., 2025).

Today’s retailers must allocate scarce shelf space while coping with approximately 30%
growth in the number of items compared to a decade ago, making assortment choices directly
consequential for both profit and shopper experience (Bianchi-Aguiar et al., 2021). Empirical
syntheses further show that "more variety" can overshoot: across 42 categories, item reductions of
up to 54% delivered an average sales lift of +11 %, indicating that curated breadth can outperform
maximal breadth. Crucially, substitution softens delisting risk (Hubner & Kuhn, 2024). Formal
assortment theory under explicit substitution also shows the problem is NP-complete, and that
capacity utilization and the identity of optimal SKUs depend on substitution levels, so naive "add
more" or greedy rules may fail (Comez-Dolgan et al., 2021). Mohaghar et al. (2020) propose a
four-echelon omni-channel supply chain model for a seasonal product under stochastic demand,
demonstrating that centralized coordination yields higher overall profit compared to decentralized
decision-making. Their findings highlight the strategic value of integrated planning in complex
retail networks. On the implementation side, real planograms are bound by four classes of
constraints—shelf, product, multi-shelf, and category—so fast heuristics are required at realistic
sizes where exact solvers often time out. Contemporary decision support, therefore, integrates
assortment, shelf-space, and replenishment with space-elastic demand and substitution.
Computational tests on retail data show profit improvements resulting from this integration.

Moreover, because demand and elasticity inputs are often noisy or missing, Distributionally
Robust Optimization (DRO) offers principled stability by treating uncertainty via discrepancy-
based ambiguity sets that shrink toward the truth as data accumulate—making recommendations
less brittle in practice (Kuhn et al., 2025). In a two-echelon vendor-managed inventory setting with
Poisson-distributed retail demand, system costs are explicitly sensitive to the demand rate—higher
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demand levels lead to increased costs—underscoring how demand parameters directly influence
inventory control and replenishment decisions (Haji et al., 2009).

Recent methodology has shifted decisively toward fast metaheuristics that jointly select the
assortment and allocate facings under space-elastic demand and explicit substitution, as exact
solvers scale poorly under real-world planogram constraints. A 2024 systematic review maps this
trend and highlights GA-based and local-improvement hybrids (e.g., GA + tabu/ILS) as practical
workhorses for large instances and integrated objectives (Heger & Klein, 2024). Within this stream,
Hibner et al. (2020) optimize two-dimensional (tilted) shelves under stochastic demand, space
elasticity, and substitution, using a specialized GA that achieves approximately 99% average
solution quality compared to exact benchmarks and reports profit uplifts of up to 15% in a retail
case. Omitting demand effects can significantly reduce profits, underscoring the importance of
modeling substitution and price elasticity within the formulation rather than addressing them ex
post. Complementing this, Czerniachowska et al. (2021) construct a GA around four families of
merchandising constraints—shelf, shelf-type/level, product, and virtual segments with
capping/nesting— demonstrating that a chromosome encoding facings, capping, and nesting,
combined with a repair step, yields efficient and feasible planograms with short runtimes relative
to CPLEX. Finally, Czerniachowska et al. (2023) propose lightweight, feasibility-first heuristics
that prune the search space to admissible sequences only; across 45 instances, they find feasible
solutions far more often than CPLEX and achieve, on average, 95% of the best observed profit
with minute-level compute—evidence that simple, industrializable rules can rival heavy
optimization under tight time budgets.

Our method operates at the category—shelf level, where retailers actually define assortments.
Feasibility is governed by group-level minimum and maximum bounds, along with a strict store-
wide capacity constraint, reflecting the real limits within which assortments must be selected. The
profit objective combines direct contribution margins with substitution-driven recapture and space-
elastic demand, while item-share inputs enter the objective as demand weights that shape the
expected mix without acting as hard constraints. Since the problem is NP-hard, we employ a
memetic algorithm that combines extensive genetic exploration with targeted local improvement,
supported by repair and diversification mechanisms to maintain feasibility and diversity. The result
is a pipeline that generates high-margin, operationally credible assortments aligned with category
bounds and total store capacity.

The remainder of this paper develops and validates this framework as follows: the literature
review synthesizes five decades of research—from early space-elasticity experiments to recent
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robust and omni-channel formulations—and identifies the methodological gaps that motivate our
hybrid approach. The problem definition section formalizes the objective function, substitution
structure, and capacity constraints, followed by a detailed exposition of the Memetic/ILS
algorithm, including initialization, crossover, mutation, hill-climbing, and diversity control
mechanisms. The computational experiments section presents results from four algorithmic
configurations, utilizing real data from 39 product categories, to examine the impact of population
size and constraint relaxation on solution quality and convergence behavior. Finally, the discussion
interprets these findings in light of theoretical expectations and managerial implications, while
acknowledging limitations and charting directions for future research.

Literature Background

Against this contemporary backdrop, it is helpful to trace how the literature has evolved. Research
on assortment and shelf-space optimization has evolved over the past five decades, beginning with
early empirical studies of space elasticity in the 1970s and gradually advancing toward integrated,
stochastic, and robust optimization models. The shelf-space literature originates from in-store
experiments documenting space elasticity. Early work demonstrated that allocating more facings
to a product tends to increase its sales, albeit with diminishing returns. Even with manual data
collection, regression analyses confirmed a systematic but tapering sales lift, laying the empirical
foundation for subsequent space-elasticity models (Anderson & Amato, 1974; Curhan, 1972).
Later studies began to couple product selection with space allocation in supermarkets, anticipating
today’s integrated planning perspective (Hansen & Heinsbroek, 1979). Marketing—operations
research subsequently quantified the effects of horizontal and vertical positioning, demonstrating
the practical magnitude of shelf-driven demand. For example, moving a product from the worst to
the best horizontal location could materially increase sales (Dreze et al., 1994).

As the field transitioned from descriptive to prescriptive approaches, researchers embedded
space-elasticity and positioning effects into decision models and showed how to linearize
diminishing-returns profit curves to maintain solvability at retail scale (Hansen et al., 2010).
Building on this foundation, Hwang et al. (2005) integrated vertical and horizontal shelf positions
into a joint space-allocation and inventory-control model. Drawing on retailer case studies, they
demonstrated that shifting a brand from lower to higher shelf levels could yield double-digit sales
gains, and they proposed a genetic algorithm heuristic that scaled effectively to realistic category
sizes. Concurrently, category-management surveys clarified the tactical division of assortment
selection, shelf-space planning, and in-store replenishment, and advocated for their integration
(HUbner & Kuhn, 2012).
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Later reviews observed that assortment models often omit space elasticity, while shelf-space
models typically ignore substitution effects—highlighting the need for integrated formulations
(Hubner, 2011; Hubner & Kuhn, 2012). Kok and Fisher (2007) were pivotal in this regard: by
combining assortment, substitution, and space elasticity in a newsvendor-type model, they
demonstrated that ignoring substitution could result in a misestimation of profits by more than
10%. Their heuristic, tested on categories of up to 25 products, revealed both structural
properties—such as a preference for smaller items under tight space constraints—and the
limitations of earlier models.

Murray et al. (2010) extended this conversation into retail practice, demonstrating through
interviews and surveys how shelf planning, assortment, and supplier negotiations are intertwined.
Their results emphasized that optimization models must be reconciled with managerial judgment
and planogram feasibility. Similarly, Baron et al. (2011) examined consumer responses to shelf
configurations in experimental settings, demonstrating that block placements and adjacency cues
could shift brand-switching probabilities by measurable margins. These findings underscored the
importance of modeling not only elasticity but also perceptual effects.

Lotfi et al. (2011) advanced methodological integration by proposing a weighted goal
programming model that jointly optimized replenishment planning and shelf allocation under
budget, storage, and perishability constraints. In a supermarket case, their LINGO-based model
showed that reallocating just 5% of shelf space between brands could improve service levels
without reducing margins. Hubner and Kuhn (2012) further examined substitution effects within
assortment optimization, while Farias et al. (2013) added a theoretical perspective by casting
assortment optimization as a robust choice-modeling problem, providing bounds in the absence of
complete substitution data. Together, these works pushed the literature toward more rigorous
formulations.

A key advancement was the integration of assortment choice with shelf allocation under space-
elastic demand and substitution, demonstrating how facings and vertical/horizontal placement
jointly shape demand. This research stream also emphasized block placement and "planogram
feasibility" constraints (Hlbner & Schaal, 2017). Hubner et al. (2016) formalized this approach
through a capacitated assortment model under stochastic demand and substitution. Using datasets
of up to 50 products, they demonstrated that ignoring substitution could result in a reduction of
expected profits by more than 15%. Their heuristic closed much of the computational gap left by
earlier models.
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Subsequent work extended the focus to two-dimensional shelves, emphasizing rectangular
blocks, adjacency, and the need to co-optimize item selection, facings, assignment, and
arrangement—not merely counts of facings (Hubner et al., 2020). Parallel studies examined
revenue maximization under vertical placement effects, revealing the computational burden of
realistic planogramming (Geismar et al., 2015). Bianchi-Aguiar et al. (2021) provided a
comprehensive review, codifying decisions (space, vertical/horizontal location, facings), demand
effects (elasticity, cross-space, position), and constraints (integer facings, capacity, bounds). They
stressed that optimization-grade models still exceed the capabilities of commercial software.
Hibner et al. (2020) further argued that two-dimensional shelves are intrinsically integrated—
encompassing selection, quantity, assignment, and arrangement—and that one-dimensional
heuristics are inadequate once vertical blocks and adjacencies become relevant.

The computational complexity of assortment optimization was clarified by Aouad et al. (2018),
who proved tight hardness-of-approximation results under ranking preference models. Their
reduction from the maximum independent set problem demonstrated that even approximate
solutions can be intractable in the general case. However, simple revenue-ordered assortments also
provide the best possible guarantees with respect to price parameters. This complexity lens helps
explain why scalable heuristics and matheuristics dominate practice.

As instance sizes increased, the literature shifted toward model reduction, exact—approximate
hybrids, and matheuristics. Leitner et al. (2024) showed that compact formulations and
decomposition techniques can quickly close gaps in assortment MILPs, although exactness
deteriorates beyond a few hundred items, making matheuristics and rounding essential.
Accordingly, a two-phase mathematical approach for integrated assortment—shelf allocation
achieved near-optimal solutions, with an average gap of less than 3.8%. The optimized plan
concentrated profit in high-visibility areas, where the most visible families accounted for about
80% of total store profit (Abbaszadeh et al., 2025)

Brandimarte et al. (2024) advocated a reduce-and-solve matheuristic, solving manageable
subproblems first and then invoking a commercial solver to keep industrial-scale problems
tractable. Heger and Klein (2024) confirmed this trend by classifying contributions according to
customer models, constraints, and solution concepts, and highlighting the rise of hybrid approaches
that blend metaheuristics with MIP-based repair. In parallel, product portfolio research in supply
chains has shifted beyond decisions to delete or revitalize products to focus on proactive
performance preservation. Abbasnia et al. (2025) applied Inverted DEA sensitivity analysis to
identify strategic items and derive improvement trajectories, showing that small input reallocations
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(e.g., 5%) can significantly enhance both margin and efficiency. Such approaches complement
assortment optimization by informing which product groups should remain prioritized when space
or capital constraints become binding (Abbasnia et al., 2025).

Where assortment is central, the realism of choice models is crucial. While the multinomial
logit (MNL) model remains popular for its tractability, nested and mixed logit models, as well as
Markov chain choice models (MCCM), capture richer substitution patterns (Désir et al., 2024).
Agarwal et al. (2019) bridged these approaches with their "MNL-Bandit," a dynamic learning
algorithm that simultaneously estimates choice parameters and maximizes revenue. Tested on
hundreds of products, their policy achieved near-optimal regret bounds and avoided the poor
performance of simpler explore-then-exploit methods, underscoring the feasibility of adaptive,
data-driven assortment planning.

On the distributionally robust side, Yu et al. (2024) framed assortment optimization as a worst-
case CVaR or chance-constrained problem over a moment set, deriving SOCP characterizations.
They demonstrated that revenue-ordered solutions remain effective under realistic conditions,
delivering substantial revenue increases and more stable worst-case performance. Most recently,
Hense and Hubner (2022) extended the modeling horizon to omni-channel retail. Their integrated
assortment—space—inventory model incorporated both in-channel and cross-channel substitution
under stochastic, space-elastic demand. In test cases with up to 80 items across store and webshop,
they found that coordinated omni-channel planning could significantly raise profits, with in-
channel substitution effects typically dominating. Their heuristic consistently outperformed
benchmarks and delivered near-optimal solutions—marking a first step toward tactical omni-
channel planogramming.

Beyond static planograms, the field has expanded into online and personalized settings. Chen
et al. (2024) studied recommendation-at-checkout with add-on items and demonstrated that a
robust protection-in-expectation policy achieved provable competitive ratios under worst-case
arrivals, performing strongly in large-scale simulations. For clarity, we complement this review
with a summary table (Table 1) synthesizing the key studies discussed, along with a compact
glossary of terms and a brief caption for the accompanying figure.

In summary, the literature demonstrates a clear evolution—from early empirical studies of
space elasticity, to integrated assortment—shelf models, and more recently to robust and omni-
channel formulations. Over time, the field has progressed from descriptive observations to
prescriptive optimization, and now toward scalable, hybrid, and data-driven algorithms. While
state-of-the-art research highlights the power of integrated, stochastic, and robust models,
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commercial tools still lag behind, leaving significant opportunities to bridge the gap between theory
and practice in retail shelf-space and assortment planning.

Despite the progress, the existing literature still reveals several gaps at the interface of
assortment optimization and shelf-space planning. Many models either abstract away from
practical feasibility constraints (e.g., group-level bounds, total store capacity) or rely on solution
methods that do not scale reliably to supermarket-sized instances. Moreover, although
metaheuristics and matheuristics have gained traction, relatively little work has focused on hybrid
approaches that explicitly balance exploration with feasibility repair and targeted local
improvement. Our study addresses this gap by developing a memetic algorithm that operates at the
category-shelf level, blending genetic exploration with repair and diversification to enforce
feasibility, and hill-climbing for local refinement. Unlike prior models, our formulation integrates
direct margins, substitution-driven recapture, and space-elastic demand within realistic capacity
and grouping bounds—producing high-margin assortments that are both computationally efficient
and operationally credible. In doing so, we position our contribution at the intersection of
theoretical rigor and practical decision support for large-scale grocery retailing.

Table 1. Chronological map of the literature linking empirical space effects to integrated,

substitution-aware assortment and 2D shelf-space optimization—highlighting demand models,
constraints, algorithms, and the specific takeaway for a scalable, robust pipeline

Space
Referen Choice/Dema | Substit | Elasticit Key Algorithm/ | Scale/Co -
ce Focus nd Model ution y/ Constraints Method ntext Key Finding
Position
: Regret near
Agarwal Inventory/ca Online .
etal. m’r\]lé_lt (I e';/lr'r;lih ) Yes — _pacity UCB bandit large- | elgmegsts)glrjt?gght
(2019) 9 (implicit) scale on the fly
Anderso Early joint
nand ;g}gg{%ﬁg Empirical/An (b\r(:ﬁd- own Shelf Optimizatio anSarInaliLa treatment of
Amato space alytical level) capacity n (early OR) Iyt assortment and
(1974) P display space.
The assortment
Aouad Hardness/ . problem is often
etal. approxima Ragrlfc;:)cfed Yes — — Copgfdﬁ)s('ty — NP-hard to
(2018) tion approximate
B [ Servi | Dol K
aron et | Inventory- ] ervice : gnoring stoc
al. dependent Iggﬁgitt?\% Partial Own levels; shelf A;Tam{ﬁ?:]; C?stgglc;ry dependence
(2011) demand stock g harms profit.
: : Codifies
I?A'ar&?;];' Shelf- Min/max; decision
e% al space Survey — — capacity; Synthesis — types/effects/co
(2021') review position nstraints; urges
_— scalability.
ode .
: : Reducing
Brandim | reduction Reduce- : :
artet al. + | General retail — — Ps?ebclﬁ‘m_ and-solve Indulstrla tlrrll::larnecr?:i ﬁ?]%
(2024) meﬁ?ceu“ (MIP repair) with MIP
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Space
Referen Choice/Dema | Substit | Elasticit Key Algorithm/ | Scale/Co o
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Position
improves both
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Robust
: protection-in-
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Curhan - .. | (diminis o Field study; rket diminishing
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overfitting.
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(2015') revenue vertical Vertical blocks reduction S are cPiti cal g
ngrlfjen Selection+ Capacity: Mathematic Selection and
Heinsbr space in Analytical Implicit Own inF;egery ’ al Store facings are
oek supermark facinas programmin | category intertwined
(1979) ets g g decisions.
Metaheuristics
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Hansen Shelf Space-elastic - Own + Capacity; Vs Retail- basic heuristics
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(2010) methods profit Position facings metaheuristi scale and
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tricks.
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Category . : : category rules
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Space
Referen Choice/Dema | Substit | Elasticit Key Algorithm/ | Scale/Co o
ce Focus nd Model ution yl Constraints Method ntext Key Finding
Position
integrated arrangement are
view inseparable.
Joint space-
Hwang Space+ Demand with - Own + Inventory, GA + Category Inventory-
etal. inventory position Partial | yertical planogram gradient -scale __ location
(2005) | + position improves profit
vs. siloed.
Scale-aware
- Assortmen - assortment
KFoiI;he;r;d t under MNL & Yes L Cardinality/c ?eeC%r:stlg:iE Husngfred under
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evidence.
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costs scale.
. Multi-
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mean loss.
Two-phased Hybrid
Integrated metaheuristi : metaheuristic
Abbasza Shelf, Retail- ; o
deh et assortment Space-elastic 2D product, and ¢ (column scale achieved <3'8/.°
—shelf Yes generation + optimality gap;

al. PR demand layout category : (real : S

(2024) optimizati bounds single-shelf data) high-visibility
on optimization items drove
~80% of profit.

Notes: "own" = effect of a product’s own shelf space on its own sales

Materials and Methods

Problem definition and Solution method

This paper addresses the problem of maximizing the expected profit from arranging product variety
on retail shelves. As a combinatorial and NP-hard problem, its inherent complexity —compounded
by numerous physical and variety-related constraints—renders exact solution approaches
infeasible for real-world scenarios (Heger & Klein, 2024). Hybrid and multi-stage metaheuristic
frameworks have recently gained significant attention (Bahrami, 2025). To tackle this
computational challenge, we propose a memetic algorithm hybridized with Iterated Local Search
(ILS). The choice of a hybrid metaheuristic approach, which combines the global search



Integrated Assortment—Shelf Optimization under Substitution...| Ebrahimi Kordler, et al. 11

capabilities of memetic algorithms with the local intensification of ILS, is motivated by its proven
effectiveness in solving complex NP-hard problems with intricate constraint structures.

The integrated assortment—shelf optimization problem involves multiple stakeholders with
interconnected interests. Category managers seek to maximize profit while balancing variety
against shelf constraints; our framework provides optimal SKU selection and facing allocation
under realistic bounds. Store operations managers prioritize planogram feasibility, addressed
through strict enforcement of capacity constraints. Retail executives focus on overall store
profitability; the proposed model quantifies the profit impact of constraint relaxation and supports
scenario planning. Consumers benefit indirectly, as the algorithm preserves variety and prevents
over-rationalization of staple categories. From a managerial perspective, the framework serves as
a decision support tool that reduces reliance on intuition and enables data-driven trade-off analysis.

For each item i, the following data is available: base demand share s;, remaining profit margin
in percent m;, consumer price p;, shelf width w;, space elasticity ¢;, assortment level (e.g.,
categories such as ‘Chocolate’ or ‘Canned Fruits”). Substitution effects between items are modeled
using a sparse matrix P, = {p;;}, where each element p;; denotes the probability that the demand
for an off-the-shelf item j is transferred to an on-shelf item i. This probability p;; is computed
based on the following formula:

_ Feature Similarity (i, j) X Total Sales Volume (i)
Pij = Number of Stores with Sales(i)

D)

Here, Feature Similarity (i, j) quantifies shared attributes —such as brand, color, dimensions,
and quality level —between items i and j. Total Sales Volume (i) represents the aggregate sales
of the item i, reflecting its market popularity. The Number of Stores with Sales (i) serves as a
normalization factor, indicating the market breadth of the item i. This approach integrates both
intrinsic product characteristics and observed market presence to estimate the likelihood of
substitution.

Shelf-space elasticity is incorporated to capture the responsiveness of sales to the amount of
display allocated. Following Curhan (1972), it is defined as the ratio of the percentage change in
unit sales to the percentage change in shelf space:

_8Q/Q
E= 75 (2)
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A large meta-analysis reports an average elasticity of approximately 0.17, with substantial
heterogeneity across categories—lowest for commodities, higher for staples, and highest for
impulse items (Eisend, 2014). Field studies further confirm that location and space effects are non-
linear, exhibiting diminishing returns once sufficient facings are allocated (Dreze et al., 1994). In
line with this evidence, we calibrated category-level elasticities within the empirically observed
band (=0.13-0.29): assigning lower values to basic commodities such as flour, sugar, and salt;
moderate values to staples like rice and tomato paste; and higher values to impulse-oriented
categories such as chocolate, potato chips, and soft drinks.

Asolution Y = {Y} } assigns to each assortment level L a list of items placed on that level. Each
chromosome gene corresponds to one level, and its content is the list of items selected for that
level. Facings are not predetermined: the number of faces for an item is simply the number of times
it appears in that list. In this way, facings emerge endogenously during optimization rather than
being externally imposed.

The profit function has two components. For each item i selected on the shelf, we define:

base; = m; p; f;"* 3)

The direct profit is:

R, = z base; s; (4)

lEY

Moreover, the substitution profit is:

R 22 Zbase-s- i
P Ly £ ©)

The objective is therefore:

max R(Y) =Ry + R, (6)

To ensure planogram feasibility, the optimization is subject to the following capacity
constraints:

1. Level constraints:
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MinWidthAssort; < Z w; < MaxWidthAssort;, )

€Yy,

2. Store constraint:

Z Z w; < MAX_STORE_WIDTH (8)
L iEYL
Memetic Framework with ILS

The proposed memetic framework combines global search with local exploitation through hill
climbing embedded in an ILS scheme. The main steps are here (Figure 1):

Initialization
Generate an initial feasible population using a two-phase constructor.

}

Evaluation
Compute total profit R(Y)=R,+R> combining margins, elasticity, and substitution.

Crossover

Feasibility Check
Ensure per-level bounds, total capacity, and repetition limits.

!

Pool Formation
Merge parents and offspring; add locally improved candidates.

}

Deduplication
Canonicalize and remove duplicate structures.

I

Hill Climbing (ILS)
Apply local improvement to elite solutions.

l

Selection
Record best/mean/worst profit and shelf utilization per iteration.

l

Termination
Stop if best solution remains unchanged for 20 iterations.

il

Figure 1. Flowchart: Memetic Algorithm

Having specified the objective function and capacity constraints, we address this NP-hard
problem using a memetic algorithm (Neri et al., 2011) that integrates genetic exploration—via
crossover and mutation—with targeted local refinement through Iterated Local Search (ILS). This
hybrid approach leverages the global search capabilities of evolutionary methods while
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intensifying promising regions of the solution space. To maintain diversity and avoid premature
convergence, the framework incorporates deduplication and diversification mechanisms during
pool formation. An adaptive stopping criterion is employed, terminating the search when the best-
of-generation profit remains unchanged over a predefined number of iterations.

Initialization

A two-phase generator ensured that all solutions were feasible: (1) for each level, random items
were added until the minimum width was reached, without exceeding maxima, and (2) the
remaining store capacity was filled with random items across levels until the global width limit
was nearly saturated.

We generate a diverse set of feasible chromosomes before the memetic cycle begins. Each
chromosome Y = {Y;} maps assortment levels Lto item lists. The constructor is repair-light and
enforces feasibility during construction, ensuring that individuals are valid at birth.

Inputs and Notation
e Foritem i: width w;, level L(i), demand share s;, price p;, margin m;, elasticity e;.
o For each level L: lower/upper width bounds (MinWidth; , MaxWidth; ).
e Global store capacity: MAX STORE WIDTH.

Define:

W (Y,) = Xiey, wi, where W (Y,)is the total shelf width occupied by items assigned to level
L. Similarly, W, (Y) = ZLW(YL),Where W, (Y)is the total shelf width used across all levels in
solution Y.

Phase 1 — Satisfy all per-level minima

For each level L, we randomly sample items i € 7, (the pool of items assigned to level L) and
greedily accept any item that maintains feasibility and contributes toward reaching the MinWidth; .
Formally, if the current partial solution is Yand candidate i € 7,, we accept i if:

W (Y,) +w; < MaxWidth,, W,,,(Y) + w; < MAX_STORE_WIDTH (9)
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Phase 2 — Pack remaining capacity (near-cap fill)

After all levels meet their minimum width requirements, the constructor opportunistically adds
items across levels to approach the MAX_STORE_WIDTH without breaching any per-level
maxima. At each step, it selects a random level Land a random candidate i € I, accepting ionly if
all feasibility checks remain satisfied; otherwise, it resamples. The process terminates once the
residual capacity MAX STORE WIDTH — W, (Y) falls below a small tolerance .

Mutation
We use a two-by-two, width-preserving mutation designed to maintain shelf balance while

exploring new item combinations.

1. Random removals. Uniformly sample two distinct assortment levels L,, L,. From each,
randomly select one item—denoted i, € L,and i, € L,—and mark them for removal. Let
the target width be W* = w; + w;, .

2. Random insertions under tolerance. Uniformly sample two candidate items j,, j,from the
entire feasible item pool (with no level restriction). Accept this pair if their combined width
falls within the tolerance band.y denote the mutation tolerance.

I (wj, +w;,) —W?* |< y Xmax(W*, &) (10)

With € a small positive constant (numerical guard). If the candidate pair violates the tolerance
condition, a new pair is resampled—up to 10 attempts.

3. Constraint screening (hard feasibility). If a width-feasible pair is found, tentatively apply the
move {i,, i} = {j1,J.}and check all constraints:

Per-level width bounds: for every level L, MinWidth;, < ¥;cy, w; < MaxWidth, .

Per-level item-count bounds (if active).

Global store width: ¥, ¥;cy, w; < MAX _STORE_WIDTH.

o~

. Rollback on failure. If no candidate pair satisfies both the tolerance and the constraint
screening within 10 attempts, the mutation is cancelled and the removed items {i,, i} are
restored. The individual remains unchanged.
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Crossover

Crossover is performed at the assortment-level granularity (a one-cut operation across levels),
which may transiently disturb level widths. To keep the algorithm repair-light yet feasible, we
apply a simple, in-group post-adjustment immediately after crossover:

1. If a level falls below its minimum width, randomly add items from that level until the
MinWidth,, is satisfied, provided that global width and item count/facing caps are not
violated.

2. If a level exceeds its maximum width, randomly remove items from that level until the
MaxWidth, is met.

3. After these per-group adjustments, we re-check the global store width and the item
repetition cap. If the child solution remains infeasible, the crossover outcome is rejected
and the parent is retained.

Deduplication

To prevent clones from dominating and to sustain exploration in Hill-Climbing, we canonicalize
each candidate and retain only the first occurrence of each unique structure. If uniqueness falls
below a predefined diversity threshold, the population is refilled up to a minimum size. This serves
as a pragmatic mechanism for maintaining population diversity (Morrison & De Jong, 2001).
Placing deduplication before hill climbing focuses the local-search budget on unique, high-quality
representatives rather than expending effort on near-identical clones. This approach reduces
redundant evaluations, improves coverage of distinct basins of attraction, and yields more stable
improvements per iteration.

Hill-Climbing (ILS local search)

We apply hill-climbing (Russell & Norvig, 2010) to improve a given feasible solution Y. Let the
neighborhood of Y be defined by two operators:

1. 1—1 replacement:

Select i € Y, remove it, and insert j ¢ Y. The new solution is:

Y' =¥\ {i) U} (11)

2. 12 replacement:
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Select i € Y, remove it, and insert two items j;, j, & Y. The new solution is:

Y =@\ i) (12)
Each neighbor Y'is only considered if it is feasible, i.e.,
VL: MinWidth, < Z wi < MaxWidth;, Z Z wi < MAX_STORE_WIDTH (13)
key/ L key/

Let R(Y)denote the profit function (from earlier). Then:

V.. = Y', ifR(Y')>R(Y), Y' € N(Y;) feasible,
t+1 ™ {Yt, otherwise. (14)

This process is repeated until one of the following termination conditions is met:

e No improving neighbor is found after HC_LOCAL_TRIES =5 attempts per removed item,
or

« HC_GLOBAL_PATIENCE = 10 consecutive non-improving steps occur.

Diversity control

To mitigate genetic drift and premature convergence in this multimodal search, we maintain
population diversity throughout the run. This preserves exploration across distinct regions of the
solution space, yielding more stable and higher-quality solutions. In our implementation, diversity
is sustained through elitism, fitness-proportionate roulette selection, and duplicate elimination with
diversity floor maintenance. The latter two mechanisms are explained in detail below.

Fitness-proportionate (roulette-wheel) selection: Parents are sampled with probability
proportional to their fitness,

i i — fmin T €
D = fi (orp; = fi = Jmin for numerical stability)
2. )
j

2. Uy = Fain +)
which biases selection toward higher-fitness individuals while retaining a nonzero probability
for all candidates (Shakir Hameed et al., 2023).

(15)
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Termination

We employ an adaptive stabilization rule: the run terminates as soon as the best-of-generation profit
has remained unchanged for a predefined number of consecutive iterations. A hard iteration cap is
maintained only as a safety fallback.

Results

Computational results and Parameter settings

For the empirical study, we selected one branch of the Ofoq Koorosh chain stores (OfogKourosh,
2025), located in Tehran, with a floor area of approximately 250 m2. Within this store, the dry-food
warehouse was the focus of analysis. A total shelf length of 21,000 cm was considered as the global
capacity distributed across 39 product categories. The product categories include Beverages,
Snacks & Sweets, Staples and Dry Goods, Canned and Preserved Foods, Condiments & Cooking
Ingredients, Breakfast & Spreads, Pasta & Grains.

The sales and inventory data for these categories cover October 2022 to September 2023. For
space elasticity, we used the empirically observed band (=0.13-0.29) described in the
methodology: lower values for commodities (e.g., flour, sugar, salt), moderate values for staples
(e.g., rice, tomato paste), and higher values for impulse categories (e.g., chocolate, potato chips,
soft drinks). Substitution inputs were derived from product attributes and sales-based relationships,
as outlined in the methodology. Category-level minimum and maximum width bounds were set
using managerial experience and store-specific constraints.

Algorithmic settings followed the implementation described earlier: mutation tolerance of y =
+10% (maximum 10 attempts); HC_LOCAL_TRIES =5and HC_GLOBAL_PATIENCE = 10 for
hill climbing; immigrant rate 0.05; and a deduplication floor of 50%. Hill climbing proceeds by
selecting a random non-empty level and attempting to remove one item, with the choice of
removable items capped at 50 tries. It terminates when no improvement is found in 10 consecutive
outer attempts, each allowing up to 5 local replacement trials. Memetic termination is adaptive: the
run stops if the best-of-generation profit remains effectively unchanged for 20 consecutive
iterations; otherwise, it continues until a hard cap of 5,000 iterations is reached. In practice, we first
experimented with fixed 100-generation runs and gradually increased the budget, observing that
performance stabilized within this range. We also tested several population sizes (10, 20, 30, and
40) and found that 20 or 30 individuals offer a good balance between diversity and runtime. The
combination of duplicate elimination and immigrant injection maintained population diversity,
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avoided stagnation in local optima, and supported stable convergence under the specified stopping
rules. Table 2 summarizes the parameter configuration adopted for the Memetic/ILS algorithm in
this study.

Table 2. Memetic/ILS parameter configuration

Parameter Setting
Generations <=5,000
Population 20 or 30
Global store width 21,000
Mutation tolerance +10%, max 10 attempts
Dedup keep ratio 50%
Immigrant rate 5%
Selection Top-5 + Elite + 30% Roulette + Fill

The empirical results are reported for four algorithmic configurations using real retail data
covering 39 product categories, with a global shelf capacity of 21,000 cm. The experiments
examined the impact of population size and category-level maximum bounds on solution quality,
allocation patterns, and convergence behavior.

The computational results are summarized across four experimental runs in Table 3. Run 1
employed a population of 20 with original minimum-maximum bounds, while Run 2 increased the
maximum by x1.5 for categories initially capped below 1000 cm. Run 3 used a population of 30
with original bounds, and Run 4 used a population of 30 with increased bounds. As shown in Table
3, moving from Run 1 to Run 3 (20—30 individuals, original bounds) yields a modest objective
gain (+17,130; =+0.6%) at the cost of longer compute time (~14—16 hours). Relaxing maxima at
population 20 (Run 2) delivers a larger improvement over Run 1 (+186,367; =~+6.2%) with a
smaller number of generations (3,718—2,817) and comparable runtime. The best objective value
is achieved in Run 4 (3,249,058) under population 30 with relaxed maxima, albeit with the most
extended runtime (~29 hours) and the highest number of generations (4,089). These results
highlight the trade-off between exploration (population size) and constraint flexibility (relaxed
maxima), on the one hand, and solution quality and computational cost, on the other. Accordingly,
subsequent analyses focus on the population-30 configurations (Runs 3—4) as they provide the most
stable and superior outcomes.

Table 3. Summary of computational performance across four experimental runs

Number of runs Seconds Hours Number of generations Profit
Run 1 51,652 14 3718 3,020,329
Run 2 53,178 15 2817 3,206,696
Run 3 58,857 16 2855 3,037,459
Run 4 103,852 29 4089 3,249,058
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Allocation outcomes of Run 3 and Run 4 are presented in Figures 2a and 2b, respectively.
Under the original bounds (Figure 2a), impulse-oriented categories, such as Chocolate and Soft
Drinks, reached their maxima, while staples (e.g., Flour, Salt) remained near their minima. After
relaxing the maximum (Figure 2b), additional space was absorbed by Jam & Preserves, Sauces &
Dressings, and Non-Alcoholic Beverages, resulting in both an increase in the number of distinct
SKUs and a rise in total facings.
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Figure 2. Category-level shelf allocation under the 30-individual configuration. (a) Original min-
max bounds. (b) Relaxed maxima scenario.

The convergence behavior of the 30-individual population is reported in Figures 3a and 3 b.
Under original bounds (Figure 3a, Run 3), the best profit curve stabilizes around 3.04M after
approximately 2,855 generations. Under relaxed maxima (Figure 3b, Run 4), the algorithm
converges to 3.25M after 4,089 generations. Comparing the two scenarios, relaxing category
maxima improved the final best profit and yielded smoother and slightly superior convergence.
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Figure 3. Convergence for population = 30. (a) Original min—-max bounds. (b) Relaxed maxima
scenario.

Cumulative coverage analysis under original bounds (Figure 4a) highlights an intense
concentration of shelf allocation. When categories are sorted by their final allocated width, the
curve shows that roughly 20% of the 39 categories (approximately eight groups) capture around
70% of the total shelf space. Elastic and impulse-driven groups, such as those in the Chocolate,
Soft Drinks, and Tea sectors, dominate the allocation. At the same time, staple and commodity
categories with lower profits (e.g., Flour, Salt) remain clustered at the lower end. This pattern
confirms the existence of a pronounced head-tail structure, where a minority of categories absorb
most of the capacity, underscoring their strategic importance in retail space planning. Cumulative
coverage under relaxed maxima (Figure 4b) displays a slightly flatter curve compared to the base
case, indicating reduced concentration. With higher upper bounds, mid-tier categories, such as Jam
& Preserves, Sauces & Dressings, and Non-Alcoholic Beverages, absorb additional space, thereby
distributing coverage more evenly across these groups. Although the top approximately 20% of
categories still account for a dominant share, the relative contribution of secondary groups
increases— suggesting that flexibility in maximum bounds can enhance variety and balance
without undermining profit concentration in high-elasticity groups.
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(a) Cumulative Shelf Coverage by Groups (b) Cumulative Shelf Coverage by Groups
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Figure 4. Cumulative coverage for population = 30. (a) Original min—max bounds. (b) Relaxed
maxima scenario.

Table 4 summarizes the allocation outcomes for the 30-individual configuration under the
original min—max bounds. Results show that highly elastic and impulse-oriented categories
approach their maximum width allocations and exhibit high average facings, reflecting strong
responsiveness to shelf space. Conversely, basic commodities—such as Flour, Salt, and Sugar—
remain close to their minima with low SKU variety and facings, confirming their limited
contribution to incremental profit. Mid-range categories (e.g., Pasta, Biscuits & Cookies, Cooking
Oil) occupy moderate allocations consistent with their elasticity levels. Overall, this table
demonstrates that the optimal planogram under the original bounds is highly skewed toward elastic
categories, while commodity categories are underrepresented. Table 5 reports the results for the
30-individual configuration when maximum category bounds are relaxed. Compared to the normal-
bounds scenario, several mid-tier categories—such as Jam & Preserves, Sauces & Dressings,
Canned Vegetables, and Non-Alcoholic Beverages—occupy significantly more space, resulting in
both an increase in the number of unique SKUs and the average facings. This reallocation enhances
variety and shelf visibility across a broader range of groups, while maintaining high-elastic
categories (e.g., Tea, Soft Drinks) near their maximum levels. Commodities remain constrained at
low levels, indicating limited responsiveness to market space. Thus, the relaxed-bounds scenario
provides a more balanced allocation, enhancing category variety without diminishing the
dominance of the most profitable groups.
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Table 4. Final allocation outcomes under 30-individual configuration (original min—-max bounds)

Total Averag
Initial Minimu | Maximu Final Unique SKUs A
Product Category Numbe | m S_,helf m S_helf Allopate SKUs _Selec'ged Facings
r of Width Width d Width | Selecte | including)
SKUs (cm) (cm) (cm) d repeated SFE[J
(facings
Biscuits & Cookies 152 700 2000 753.9 39 135 3.46
Bottled Water 16 150 400 400 16 57 3.56
Breakfast Spreads & Nut 17 100 200 198.4 1 21 1.91
Butters
Candies & Toffees 8 100 250 103 4 7 1.75
Canned Fish 19 120 250 246.8 10 29 2.9
Canned Fruits 8 80 200 196.5 8 23 2.88
Canned Vegetables 10 70 200 195 10 26 2.6
Chewing Gum 40 100 200 197.7 19 38 2
Chocolate 42 300 600 566 21 163 7.76
Cooking Oil 29 700 2500 955.5 24 91 3.79
Crackers 11 80 200 81.4 4 7 1.75
Dessert & Jelly Mixes 41 150 350 345.7 25 41 1.64
Flour 16 70 200 198.3 12 16 1.33
Fruit Juices 131 400 800 798 84 155 1.85
Honey 14 100 200 199.8 12 28 2.33
Imported Rice 59 1000 2500 2482 34 62 1.82
Instant Drink Powders 24 70 150 98.1 5 6 1.2
Iranian Rice 28 500 800 798.7 21 36 1.71
Jam & Preserves 33 200 500 498.9 26 71 2.73
Legumes & Pulses 27 300 600 593.5 26 51 1.96
Lemon Juice, Verjuice & 19 100 250 248.5 18 26 1.44
Vinegar
Non-Alcoholic Malt Beverages 56 400 1000 998.3 48 132 2.75
Pasta 33 250 800 778 29 64 2.21
Pickles 17 120 250 249.5 17 31 1.82
Popcorn 13 200 600 585.5 11 29 2.64
Potato Chips 36 600 2000 1054 26 62 2.38
Ready-to-Eat Canned Meals 21 100 300 300 17 40 2.35
Salt 11 100 200 187.3 7 14 2
Salted Preserves 17 150 350 347.7 13 41 3.15
Sauces & Dressings 23 150 300 296.2 14 44 3.14
Savory Snacks 43 500 1500 500.5 19 28 1.47
Sesame Paste & Syrups 9 70 150 149 7 19 2.71
Soft Drinks 55 600 1500 1494.9 54 243 4.5
Spaghetti 24 250 800 607.7 17 31 1.82
Spices & Seasonings 44 100 300 299.9 30 47 1.57
Sugar & Cube Sugar 42 200 400 397.6 16 29 1.81
Syrups & Concentrates 7 150 300 300 7 28 4
Tea 55 700 2000 1997.6 47 172 3.66
Tomato Paste 7 150 300 299.2 7 30 4.29
Total 1257 10180 26400 20998.6 815 2173 100.64
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Table 5. Final allocation outcomes under 30-individual configuration (relaxed maxima)

Total Averag
Initial Minimu | Maximu Final Unique SKUs A
Product Category Numbe | m S_,helf m S_helf Allopate SKUs _Selec'ged Facings
r of Width Width d Width | Selecte | including)
SKUs (cm) (cm) (cm) d repeated SFE[J
(facings
Biscuits & Cookies 152 700 2000 705 45 91 2.02
Bottled Water 16 150 600 281.7 15 41 2.73
Breakfast Spreads & Nut 17 100 300 209.8 12 31 258
Butters
Candies & Toffees 8 100 375 102.5 5 7 1.4
Canned Fish 19 120 375 374.3 13 44 3.38
Canned Fruits 8 80 300 297 8 35 4.38
Canned Vegetables 10 70 300 300 10 40 4
Chewing Gum 40 100 300 296.3 21 57 2.71
Chocolate 42 300 900 300 14 94 6.71
Cooking Oil 29 700 2500 701 24 63 2.63
Crackers 11 80 300 82.2 5 7 1.4
Dessert & Jelly Mixes 41 150 525 505 30 60 2
Flour 16 70 300 172.8 12 14 1.17
Fruit Juices 131 400 1200 600.8 65 126 1.94
Honey 14 100 300 299.8 11 41 3.73
Imported Rice 59 1000 2500 2412.5 31 60 1.94
Instant Drink Powders 24 70 225 72.1 5 5 1
Iranian Rice 28 500 1200 890 19 42 2.21
Jam & Preserves 33 200 750 745.4 27 106 3.93
Legumes & Pulses 27 300 900 899.5 26 78 3
Lemon Juice, Verjuice & 19 100 375 364.3 19 35 1.84
Vinegar
Non-Alcoholic Malt Beverages 56 400 1500 1494 45 191 4.24
Pasta 33 250 1200 353 24 29 1.21
Pickles 17 120 375 374 17 46 2.71
Popcorn 13 200 900 399.5 10 19 1.9
Potato Chips 36 600 2000 614 21 36 1.71
Ready-to-Eat Canned Meals 21 100 450 450 18 60 3.33
Salt 11 100 300 232.7 5 18 3.6
Salted Preserves 17 150 525 522 13 62 4.77
Sauces & Dressings 23 150 450 448.9 15 68 4,53
Savory Snacks 43 500 1500 501.5 24 29 1.21
Sesame Paste & Syrups 9 70 225 225 7 29 4.14
Soft Drinks 55 600 1500 701.9 41 107 2.61
Spaghetti 24 250 1200 394.2 13 22 1.69
Spices & Seasonings 44 100 450 449.4 36 67 1.86
Sugar & Cube Sugar 42 200 600 307.6 16 19 1.19
Syrups & Concentrates 7 150 450 447 7 41 5.86
Tea 55 700 2000 1996.3 43 169 3.93
Tomato Paste 7 150 450 386.5 7 38 5.43
Total 1257 10180 32600 20999.5 779 2127 112.62
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To assess the practical value of the optimization framework, we compared the algorithm's best
solution (Run 4) against the store's current planogram configuration. The current configuration was
extracted from the retailer's operational records, reflecting the existing assortment and facing
decisions implemented in practice. Expected profit for both configurations was computed using the
same objective function (Eg. 6), ensuring a consistent basis for comparison under identical demand,
substitution, and elasticity assumptions.

Table 6 summarizes the comparison across three key metrics: the average number of active
SKUs per category, the average facings per category, and the expected profit. The optimized
solution increases the average SKU count by approximately 27% (from 15.7 to 20.0 items per
category) and total facings by approximately 12%, resulting in a 37% improvement in expected
profit under the model assumptions.

Table 6. Comparison of optimized solution versus current store configuration

Metric Current Memetic/ILS Change (%)
Avg. SKUs per category 15.7 20 27.4%
Avg. facings per category 48.8 54.5 11.7%
Expected profit 2,373,380 3,249,058 36.9%=37%

These results suggest that the current store configuration underutilizes available shelf capacity
in terms of product variety. The optimization algorithm capitalizes on this opportunity by activating
additional SKUs—particularly smaller-width items that fit within the same shelf space—and by
leveraging substitution relationships to capture demand that would otherwise be lost when items
are out of stock. It should be noted that the profit improvement is conditional on the validity of the
estimated elasticity and substitution parameters; the comparison, therefore, indicates potential
rather than guaranteed gains.

Discussion and Conclusion

In this study, we formulated and solved an integrated assortment—shelf optimization problem that
simultaneously considers substitution effects and space-elastic demand under realistic retail
constraints. We developed a hybrid Memetic Algorithm embedded with Iterated Local Search
(ILS) to address this NP-hard problem. Practically, we constructed a substitution structure based
on product attributes and sales relationships to capture demand recapture when an item is off-shelf;
calibrated category-level space elasticities within empirically grounded bands to reflect the
diminishing returns of facings; encoded feasibility through per-category minimum and maximum
bounds and a tight global capacity constraint, ensuring that every candidate planogram is
operationally valid; and designed a memetic search in which chromosomes map items to shelf
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levels and facings emerge endogenously, incorporating feasibility-first initialization, repair-light
crossover and mutation, deduplication and diversity control, and local hill-climbing to refine
promising solutions. The proposed framework was validated using real retail data.

The hybridization strategy was intentionally designed to balance exploration and
intensification throughout the search process. The Memetic layer governed population-based
global exploration through crossover and mutation operators, while the embedded ILS component
applied local hill-climbing to refine elite individuals at each generation. Mutation operations were
width-preserving, preventing unbalanced allocations, and crossover was followed by an in-group
adjustment to maintain per-level bounds. A deduplication mechanism avoided population cloning
and preserved diversity, while an adaptive stopping criterion terminated the run once objective
improvement plateaued. This methodological integration provided both computational stability and
practical realism, making the algorithm suitable for large-scale retail data where exact optimization
is infeasible.

The present study proposed a hybrid framework incorporating several innovations that
collectively distinguished it from prior shelf-space optimization research. First, unlike
conventional approaches, where facings were explicit decision variables requiring separate
optimization (Hubner & Schaal, 2017; Hlbner et al., 2020)The chromosome encoding allowed
facings to emerge endogenously through repeated item occurrences within shelf-level genes,
thereby reducing the solution space dimensionality. Second, the two-phase initialization
guaranteed 100% feasibility across all runs, unlike previous GA-based methods that relied on
expensive post-hoc repair (Czerniachowska et al., 2021) .Third, whereas standard mutation
operators often destabilize constraint satisfaction (Hansen et al., 2010), the width-preserving 2x2
mutation maintained approximate capacity neutrality within £10% tolerance bands, eliminating
repair overhead. Fourth, to prevent premature convergence, the framework incorporated
deduplication before hill climbing, combined with immigrant injection and diversity floor
maintenance, thereby focusing computational effort on structurally distinct solutions. Fifth,
although hybrid metaheuristics had been identified as promising directions (Heger & Klein, 2024),
few studies have operationalized this integration for shelf-space problems; the Memetic/ILS
framework explicitly combines evolutionary global search with systematic hill-climbing
intensification. Together, these design choices enabled the algorithm to achieve high-quality,
feasible solutions at problem scales where exact solvers were computationally infeasible.

The computational experiments confirmed that the hybrid Memetic/ILS algorithm achieved
stable, high-quality solutions across runs. The combination of global exploration and local hill-
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climbing refinement maintained diversity in the solution pool, avoided premature convergence,
and ensured continuous improvement while preserving feasibility under strict shelf and category
constraints. This hybrid structure enabled the algorithm to reach near-optimal regions efficiently,
providing practical convergence within a realistic computational time.

The observed allocation patterns across product categories are consistent with theoretical
expectations from the literature. Impulse-driven and high-margin categories reached or approached
their upper space limits, reflecting their high profit density and strong responsiveness to additional
shelf exposure. Conversely, low-elasticity staples stabilized near their lower bounds. Relaxing
category-level constraints resulted in structural changes to assortment balance. Greater flexibility
in maximum bounds allowed a broader and more balanced distribution of shelf space without
diminishing overall profitability. This outcome suggests that moderate constraint relaxation
supports both variety and visual appeal, resulting in more realistic and consumer-friendly shelf
configurations.

Pareto analysis confirmed that roughly 20% of SKUs accounted for more than 80% of total
profit. This aligns with the long-tail phenomenon in assortment planning research, where a small
number of items dominate category performance. From a managerial standpoint, these results
support SKU rationalization strategies: retailers can confidently focus on high-performing, high-
elasticity categories while maintaining limited representation of lower-performing staples to
preserve variety and shopper satisfaction. Thus, an optimal shelf strategy should retain minimal
representation of low-elasticity commodities for completeness while dedicating incremental space
to categories that exhibit strong responsiveness and higher marginal returns.

Beyond the direct optimization outcomes, several implicit findings emerged from the
computational experiments with important managerial implications. (a) The 6.2% profit
improvement from relaxing category maxima (Run 2 vs. Run 1) demonstrated that retailers could
use constraint adjustments as a low-cost strategic lever—rather than expanding physical store
capacity, simply revising internal category policies unlocked substantial gains. (b) When upper
bounds were relaxed, mid-tier categories such as Jam & Preserves and Sauces & Dressings
absorbed significant additional space, indicating that these "middle performers” possessed
untapped elasticity; retailers typically focused on optimizing top-tier categories, yet the findings
suggested that mid-tier groups warranted greater attention in assortment reviews. (c) The algorithm
maintained minimal representation of low-elasticity staples (Flour, Salt) without eliminating them,
preserving perceived variety and category completeness—addressing a common concern that
optimization led to over-rationalization. (d) The modest gain (+0.6%) from increasing population
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size (20—30) at the cost of additional runtime suggested that retailers with tighter planning
windows could adopt smaller populations with minimal quality loss, enabling faster replanning
cycles.

The comparison with the current store configuration revealed actionable insights for retail
managers. The 37% profit improvement was primarily attributable to two factors: (a) an increase
in the number of active SKUs (+27%), suggesting that the current planogram underutilized
available shelf capacity in terms of product variety; and (b) improved exploitation of substitution
relationships, whereby adding complementary items captured demand that would otherwise have
been lost. Notably, the optimized solution favored smaller-width items that occupied less shelf
space per unit, allowing for a higher variety within the same total capacity. From an operational
perspective, this implied that expanding the store's back-room storage or replenishment frequency
could have supported the recommended assortment expansion. However, the profit improvement
was conditional on the model's demand assumptions. Managers were advised to interpret these
figures as indicative potential rather than guaranteed outcomes and to consider pilot testing on a
subset of categories before implementing them on a full scale.

While this study makes meaningful contributions to integrated assortment—shelf optimization,
several limitations should be acknowledged. From a methodological standpoint, the NP-hard nature
and scale of the problem (~1,000+ item-level decisions) precluded comparison against exact
optimal benchmarks. Results may not generalize directly to stores with different layouts, customer
demographics, or product types such as perishables. Computationally, the best-performing
configuration required approximately 29 hours, which is acceptable for weekly planning cycles but
prohibitive for real-time optimization. Finally, the Iranian retail context may limit direct
transferability to Western or other emerging markets. Despite these limitations, the proposed
framework provides a robust foundation for practical shelf-space optimization and offers clear
directions for future research.

Building on these results, the proposed framework offers strong practical transferability and
extensibility. It serves as a scenario-planning engine for category managers: by tuning per-category
ceilings/floors and total capacity, they can quantify assortment breadth, facings, and profit trade-
offs before operational rollout. The demand layer is modular—alternative elasticity and
substitution estimators (including data-driven or machine-learning updates) can be plugged in
without redesigning the optimization core. Looking ahead, the same pipeline can be deployed
across multi-store networks and omni-channel contexts, enriched with promotion/seasonality
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calendars or lightweight learning components for continuous parameter refresh—amplifying
performance while preserving interpretability and operational credibility.

Future studies could extend the analysis in several directions. One promising avenue is to test
the algorithm across multiple stores with heterogeneous layouts and consumer demographics,
enabling richer generalization. Another direction is to incorporate dynamic aspects—such as
seasonality, promotions, or competitive reactions—into the optimization framework. Advances in
demand modeling, particularly with machine learning methods, could further improve elasticity
and substitution estimation, yielding more precise inputs. Finally, real-world implementation
studies would be valuable for assessing managerial acceptance and the operational feasibility of
algorithmic recommendations.
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