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Objective: This study aims to evaluate the greenness and efficiency of the Iranian 
petrochemical supply chain, a sector that plays a vital role in both economic 
performance and environmental sustainability. Despite its importance, limited 
studies have comprehensively analyzed this industry’s efficiency using multi-
dimensional and uncertainty-sensitive approaches.  

Methods: To address this issue, an integrated Network Data Envelopment 
Analysis (NDEA) framework combined with the Fuzzy Delphi Method was 
developed to assess the performance of ten leading petrochemical companies in 
Iran. Seventeen evaluation criteria were identified and validated, and the 
companies were analyzed under optimistic and pessimistic scenarios to capture a 
balanced and realistic view of their efficiency.   

Results: The findings revealed that only a few companies were efficient under 
both scenarios, while others exhibited inefficiencies due to high environmental 
costs, excessive employment, and poor-quality management systems. Sensitivity 
analysis showed that reducing undesirable outputs and optimizing dual-role 
variables significantly improves performance. Efficient companies should also 
focus on sustaining competitiveness by optimizing their pessimistic efficiency 
scores.  

Conclusion: The results suggest that the proposed NDEA–Delphi approach 
provides a comprehensive and realistic tool for assessing the green efficiency of 
industrial supply chains. This framework can support decision-makers in 
identifying improvement areas, reducing resource waste, and developing 
environmentally responsible operational strategies in the petrochemical sector. 
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Introduction 

In the global economy, the petrochemical industry plays a significant role in supplying the world's 

chemical product demand. This industry operates in a variety of countries within competitive 

business environments. The petrochemical industries are typically large corporations with diverse 

stakeholders actively managing their supply chains. This sector focuses on the manufacturing of 

chemicals from petroleum as well as chemicals extracted from petroleum refinery byproducts. In 

addition to supporting many other industries, including agriculture, automobiles, construction, and 

pharmaceuticals, the petrochemical industry contributes significantly to the economy of both 

developed and developing countries. It is estimated that 96 percent of all manufactured goods have 

traces of chemical manufacturing, according to the American Chemistry (Council, 2019). For an 

industry with a high product mix, multiple raw material suppliers, and multiple markets, it is vital 

to maintain the efficiency of operations throughout the supply chain to remain competitive. This 

realization has led to increasing recognition of the importance of good supply chain management 

practices within the petrochemical industry (Yakideh & Moradi, 2023). This is particularly true 

with the increasing importance of logistics in the chemical manufacturing industry, becoming ever 

more apparent as the cost of logistics in chemicals is rapidly outstripping the cost of other operating 

expenses (Z. Wang & Fan, 2024). 

Compared to other industries, supply chain management in the petrochemical sector poses 

distinct challenges that require technically complex supply chain solutions (Abbood, 2025; 

Sayardoost Tabrizi et al., 2024). Petrochemical facilities run on a continuous production line, 

creating a stream of goods such as plastics, soaps, fertilizers, and paints that are produced from 

crude oil (Z. Wang & Fan, 2025). The raw materials for these products are continually supplied, 

and their delivery is scheduled to ensure that manufacturing is not interrupted. Petrochemical goods 

are packed in various configurations to accommodate multiple means of transportation, and they 

are often flammable or toxic, necessitating careful handling. Similar logistical complexities are 

also observed in other large-scale supply chains, where optimization models such as multi-cross-

docking rescheduling can play a vital role in enhancing efficiency (Sahebi et al., 2024). The 

enduring necessity to maintain uninterrupted operation of the plants and continuous delivery of 

finished goods is the culprit of much of the complexity that prevails within the management of the 

supply chain for petrochemicals (Sayardoost Tabrizi et al., 2025). Because of the dynamic nature 

of the sector, it is challenging to establish reliable forecasting and schedule the logistics of sourcing, 

delivery, and transportation. 

To achieve continuous production in the petrochemical industry, selecting the chemical 

process route is a key design decision in the early phases of chemical plant development and design. 

Economic considerations used to be the primary factor in selecting the chemical process method. 

However, environmental risk and industrial safety in the development of petrochemical supply 
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chains have recently become two of the most critical planning objectives for the petrochemical 

industry. This is attributed to recent overarching concerns of global warming and increasing 

awareness of the size of environmental pollution generated by petrochemical industries. As a result 

of the potential for harmful environmental impacts caused by the petrochemical sector, 

environmental concerns, particularly the green supply chain efficiency of this sector, have risen to 

the forefront of national and international strategic policy-making (Yakideh et al., 2024). This is 

similar to the trend in governmental regulation of environmental standards and the growing demand 

of consumers for green products in the supply chain, which includes the product flow from raw 

materials to the delivery of goods to end-consumers along with information flow across the supply 

chain, have led to the emergence of the “green supply chain management” concept (Ghasemian 

Sahebi et al., 2024; Z. Wang & Fan, 2025). 

There has been a scarcity of research on petrochemical supply chain management (Abbood, 

2023; Wang & Fan, 2024). Notably, research on understanding the environmental ramifications of 

the petrochemical industry is limited (Sayardoost Tabrizi et al., 2025; Yakideh et al., 2024). For 

example, (Sayardoost Tabrizi et al., 2025) focused on ranking the petrochemical industry suppliers 

in a circular supply chain. (Z. Wang & Fan, 2025) researched the petrochemical industry's adoption 

of green technologies and DEA-based evaluations to facilitate more environmentally friendly 

processes. Similar multi-criteria decision-making approaches, such as Fuzzy ISM–DEMATEL, 

have been effectively applied to identify and prioritize sustainability barriers in renewable energy 

supply chains (Ghasemian Sahebi et al., 2024), offering methodological insights for petrochemical 

sector studies. Due to the scarcity and uncertainty of data on many chemical production processes, 

(Yakideh & Moradi, 2023) estimated crucial production parameters to shed light on the 

environmental performance of a chemical manufacturing process by employing mass and energy 

flow data. 

While existing studies provided insights into issues related to the sustainability of the 

petrochemical industry, they are limited in scope and number. Due to the complexity of the 

petrochemical supply chain, analyzing performance and decision-making is very challenging. 

Similar methodological approaches have also been successfully applied in Iranian industries, such 

as service productivity evaluation with DEA-based methods (Etezadi et al., 2023) and efficiency 

assessment using the Malmquist productivity index (Habibpoor et al., 2022), which further 

highlights the potential of DEA-based frameworks for assessing environmental efficiency. There 

is a need for holistic decision-support tools to assist decision-making in the context of the green 

efficiency of the petrochemical supply chain. Thus, the novelty of this study lies not in proposing 

a new methodological framework but in its innovative application of an integrated Fuzzy Delphi–

NDEA approach to the Iranian petrochemical supply chain, providing a comprehensive and 
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context-specific assessment of green efficiency. Thus, this study seeks to answer the following 

questions: 

RQ (1): How can a relevant set of key performance evaluation criteria for the petrochemical supply 

chain be determined? 

RQ (2): How can the efficiency of the petrochemical supply chain be evaluated under qualitative 

and imprecise criteria? 

The rest of this manuscript is organized as follows: Section 2 reviews previous studies on the 

efficiency assessment of petrochemical supply chains. Section 3 presents the NDEA model. 

Section 4 discusses the results. Section 5 elaborates on the results and highlights managerial 

implications. Section 6 concludes this paper and highlights future research directions. 

Literature Background 

This section: a) reviews key prior studies pertinent to the petrochemical supply chain management 

and places these research contributions in context, b) provides theoretical backgrounds of DEA and 

NDEA models, and c) reviews previous studies utilizing the DEA technique and highlights its 

application to petrochemical supply chains. In this section, we outline the research gap in prior 

studies and briefly highlight DEA and its extension, NDEA, as an appropriate method for assessing 

the efficiency of petrochemical supply chains. 

Petrochemical companies and supply chains rely on the steady flow of materials, whereas 

manufacturing companies are primarily engaged in discrete production processes (Louw & 

Pienaar, 2011). Petrochemical supply chains add value to materials by mixing, separating, forming, 

or purifying them through chemical reactions (Lima et al., 2016). Because of its steady modes of 

production, size, and complexity, as well as its economic and social relevance, the petroleum sector 

involves a highly complex supply chain (Lababidi et al., 2004). Due to its complexity, recently, 

there has been growing attention among scholars and policymakers to focus on efficient supply 

chain operations and green technologies in petrochemical supply chains (see also studies on carbon 

emission costs in supply chain contracts: (Zegordi & Shahidi, 2023); and green routing networks 

in food logistics: (Pashang et al., 2025) to maximize environmental efficiency and reduce costs 

(Sayardoost Tabrizi et al., 2024; Z. Wang & Fan, 2025). 

The supply chain of the petroleum industry is very complex compared to other industries. It is 

divided into two different, yet closely related, major segments: the upstream and downstream 

supply chains. The upstream supply chain involves the acquisition of crude oil, which is the 

specialty of the oil companies. The upstream process includes the exploration, forecasting, 

production, and logistics management of delivering crude oil from remotely located oil wells to 

refineries. The downstream supply chain starts at the refinery, where the crude oil is manufactured 
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into the consumable products that are the specialty of refineries and petrochemical companies. The 

downstream supply chain involves the process of forecasting, production, and logistics 

management of delivering crude oil derivatives to customers around the globe. Challenges and 

opportunities exist now in upstream and downstream supply chains (Abbood, 2025; Hussain et al., 

2006). 

While there have been several studies on performance evaluation and efficiency assessment of 

the petrochemical industry, these studies are limited in scope and number. This research focuses 

on the efficiency assessment of petrochemical supply chains using data envelopment analysis. 

Recent advancements also highlight the integration of machine learning and multi-stage network 

DEA better to address uncertainties and dynamic conditions in petrochemical operations (Yakideh 

& Moradi, 2023). In addition, recent contributions have explored the role of blockchain adoption 

in supporting green supply chains (Sadeghi et al., 2023), providing insights into how technological 

innovation can complement DEA-based evaluations. The following sections summarize data 

envelopment analysis before delving into its application to the petrochemical supply chain. Table 

1 summarizes previous studies utilizing the DEA technique in petrochemical supply chains. 

Table 1. A summary of DEA models applied to the petrochemical industry 

No. Title Reference 
Type Of 

DEA 
undesirable 

output 
Case Study 

1 
Sustainability-oriented modelling 

of petrochemical logistics processes 
 

(Abbood, 2025) NDEA  
Petrochemical 

logistics 

2 
Green DEA-based sustainability 

evaluation for international 
petrochemical supply chains 

 

(Z. Wang & Fan, 
2025) 

Green DEA ✓ 

International 
petrochemical 
supply chain 

 

3 

Clustering with machine learning 
and using NDEA in development 

planning: A case study in the 
petrochemical two-stage 
sustainable supply chain 

 

(Sayardoost 
Tabrizi et al., 

2024) 
NDEA  

Petrochemical 
supply chain 

 

4 
Assessing the sustainability of 

supply chain performance using 
machine learning and network DEA 

(Yakideh & 
Moradi, 2023) 

NDEA-ML  
Petrochemical 
supply chain 

 

5 
A new Fuzzy DEA model for green 

supplier evaluation considering 
undesirable outputs 

(H. Wang et al., 
2020) 

FDEA  Simulated data 

6 

Developing a Double Frontier 
Version of the Dynamic Network 

DEA Model: Assessing 
Sustainability of Supply Chains 

(Samavati et al., 
2020) 

DNDEA  
Bumpers 

supply chain 

7 
A novel network DEA-R model for 
evaluating hospital services supply 

chain performance 

(Gerami et al., 
2020) 

NDEA  
Hospitals 

supply chain 
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8 

A supplier performance evaluation 
framework using single and bi-

objective DEA efficiency modeling 
approach: individual and cross-

efficiency perspective 

(Goswami & 
Ghadge, 2020) 

DEA  
Steel supply 

chain 

9 

Measuring and improving adaptive 
capacity in resilient systems using an 

integrated DEA-Machine learning 
approach 

(Salehi et al., 
2020) 

DEA-MLP 
 

 Simulated data 

10 

An integrated weighting and ranking 
model based on entropy, DEA, and 
PCA, considering two aggregation 
approaches for the resilient supplier 

selection problem 

(Davoudabadi et 
al., 2020) 

DEA  Simulated data 

11 
Green Supplier Selection Based on 

DEA Model in Interval-Valued 
Pythagorean Fuzzy Environment 

(Wu et al., 2019) 
DEA in 
IVPFE 

 Simulated data 

12 
Evaluating green suppliers: 

Improving supplier performance 
with DEA in incomplete data. 

(Dobos & 
Vörösmarty, 2019) 

DEA  Simulated data 

13 

Performance Management of Supply 
Chain Sustainability in Small 

and Medium-Sized Enterprises 
Using a Combined Structural 
Equation Modelling and Data 

Envelopment Analysis 

(Dey et al., 2019) DEA  Simulated data 

14 

A new DEA model for evaluation of 
supply chains: A case of selection 
and assessment of environmental 

efficiency of suppliers 

(Krmac & 
Djordjević, 2019) 

Non-radial 
DEA 

 
 Simulated data 

15 

Assessing the sustainability of 
supply chains by a chance-

constrained two-stage DEA model in 
the presence of undesirable factors 

(Izadikhah & Saen, 
2018) 

NDEA  
Pasta supply 

chain 

16 
Supply chains' performance with 
undesirable factors and reverse 
flows: A DEA-based approach. 

(Jahani Sayyad 
Noveiri et al., 

2018) 
Radial DEA  

Textile supply 
chains 

17 
Green Efficiency Analysis of 

Longan Supply Chains: A Two-
Stage DEA Approach 

(Panmanee et al., 
2018) 

NDEA  
Steel supply 

chain 

18 
Performance Evaluation in Green 

Supply Chain using BSC, DEA, and 
Data Mining 

 
(Khalili & 

Alinezhad, 2018) 

DEA-based 
MPI 

 Simulated data 

19 

Supplier selection study under the 
respect of the low-carbon supply 
chain: A hybrid evaluation model 

based on FA-DEA-AHP 

(He & Zhang, 
2018) 

DEA  
Steel supply 

chain 

20 

Sustainability evaluation of the 
supply chain with undesired outputs 

and dual-role factors based on 
double frontier network DEA 

(Su & Sun, 2018) NDEA  
Tea supply 

chain 

Note: Type of DEA Column: FDEA: Fuzzy DEA, DNDEA: Dynamic Network DEA, NDEA: Network DEA, 
MPI: Malmquist Productivity Index, MLP: Multilayer perceptron, IVPFE: Interval-Valued Pythagorean Fuzzy 

Environment. 

 

https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron
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The main weaknesses of the studies listed in Table 1 are summarized as follows: 

 First: Table 1 shows that all the papers assume the inputs and outputs are deterministic. 

However, in the real world, there might be incomplete data. 

 Second: All the DEA models are radial (i.e., CCR and BCC). The radial DEA models 

assume the proportional changes of inputs, outputs, and intermediate measures. 

 Third: literature treats a DMU as a closed system in which all the outputs enter the next 

stage as inputs. However, in many cases, outputs might leave the system at one of the stages 

without entering the next stage. On the other hand, external inputs might enter the network 

in one of the stages. 

Most of the earlier works exploited complete data, and incomplete data (Incompleteness in 

data can refer to noise in either the input (Shrestha et al., 2019; Tiwari & Naskar, 2017) or in the 

labels(Nigam et al., 2000; Tsuboi et al., 2008). Also, previous studies mainly employed quantitative 

criteria, and qualitative criteria have been used less frequently. Therefore, the present study 

represents one of the first comprehensive applications of NDEA to the performance evaluation of 

the petrochemical supply chain. 

Materials and Methods 

The present study is applied research in terms of objectives and descriptive-analytical in terms of 

data collection. It is mathematical in nature and cross-sectional. This work seeks to evaluate the 

performance of the petrochemical green supply chain. The statistical population consisted of 

Iranian petrochemical companies in green production. The study population was Iranian 

petrochemical companies active in green output, from which 10 leading companies active in green 

products were selected based on the researcher's familiarity, the availability of information, and 

admission to the Tehran Stock Exchange. Due to the companies' data confidentiality, their names 

have not been mentioned. A total of 10 famous green production companies were selected based 

on the author’s knowledge. Also, nine experts were invited to participate in the study. Table 4 

describes the expert panel.  

Table 4. Profile of research experts 

No. Position Level of Education Experience (year) Age (year) 

1 Managing Director BSc 15 37 

2 Managing Director BSc 20 43 

3 Managing Director Ph.D. 12 48 

4 Managing Director BSc 25 52 

5 Managing Director MSc 17 46 

6 Managing Director MSc 30 65 

7 Managing Director MSc 19 52 

8 Managing Director MSc 20 56 

9 Production manager Ph.D. 7 30 
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Energy resources in Iran are the third largest oil reserves and the second largest natural gas 

reserves in the world (Kazemi et al., 2013). Figure 2 depicts the geographical distribution of the 

selected companies.  

DMU1

DMU2

DMU4

DMU7DMU8

DMU10

DMU9

DMU5

DMU3
DMU6

 

Fig. 2. Geographical distribution of the DMUs 

According to the above, this study was conducted in the following steps: 

 Performance measurement criteria (input and output variables) were extracted from the 

literature. 

 The extracted criteria were screened using the FDM based on expert opinion to identify 

measurable criteria in the petrochemical industry.  

 Data were collected, and the performance of the green supply chain was evaluated and 

quantified through the efficiency score. 
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Data Collection Protocol 

Data were collected from ten leading petrochemical companies in Iran through a structured 

protocol. The firms were selected from the list of petrochemical companies admitted to the Tehran 

Stock Exchange, with the inclusion criteria being: (i) availability of annual financial and 

sustainability reports for 2018–2022, (ii) sufficient disclosure of environmental and operational 

data, and (iii) engagement in green production practices. Companies not meeting these criteria were 

excluded. Due to confidentiality agreements, the actual company names cannot be disclosed; 

instead, each company was anonymized and randomly labeled DMU1–DMU10. Quantitative 

indicators such as energy consumption, environmental costs, and production volumes were 

obtained from company annual reports, Tehran Stock Exchange disclosures, and sustainability 

reports covering 2018–2022. Qualitative indicators such as “Supplier Flexibility” and “Customer 

Satisfaction” were assessed using structured questionnaires rated on a 1–5 Likert scale and 

validated by the expert panel. Expert judgments were transformed into fuzzy numbers to capture 

uncertainty. Including objective company data and subjective expert evaluations ensured that all 

17 input/output variables were measured transparently and consistently, enhancing the study's 

replicability. 

Fuzzy Delphi Procedure 

The Fuzzy Delphi Method (FDM) was employed to validate and finalize the 17 input/output 

variables used in the study. Nine experts with backgrounds in supply chain management, 

petrochemical operations, and environmental management participated in a two-round Delphi 

process. Each expert evaluated the candidate variables using triangular fuzzy numbers (L, M, and 

U). The fuzzy responses were aggregated and defuzzified using the formula (L + M + U)/3. A 

threshold of 0.66 was applied, meaning that variables with defuzzified scores above this value were 

retained. To measure inter-expert agreement, Kendall’s W coefficient was computed and yielded a 

value of 0.81, indicating strong consensus among experts. After the second round, the procedure 

converged, selecting 17 final variables (see Appendix B). 

NDEA Model Specification 

The proposed multi-stage network DEA model was implemented in three configurations: 

optimistic, pessimistic, and overall evaluation. The models were solved using Lingo 19.0 

optimization software, which supports linear and non-linear programming. 

The analysis was conducted under a variable return to scale (VRS) assumption to account for 

scale heterogeneity across the firms. An input-oriented approach was adopted, as the primary 

managerial interest was identifying potential input reductions while maintaining the same output 

levels. 
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Undesired outputs (e.g., CO₂ emissions, environmental waste, and dissatisfied customers) were 

incorporated into the model by treating them as inputs (i.e., to be minimized). This ensures that 

higher values of undesirable factors reduce efficiency, consistent with the logic of DEA. Dual-role 

variables, such as energy consumption efficiency, were modeled according to their functional role 

in each stage—serving as an output in one stage and an input to the next. 

A non-Archimedean infinitesimal constant (ε = 10⁻⁶) was used to ensure the feasibility of the 

linear programming models without affecting efficiency scores. Sensitivity tests with alternative ε 

values (10⁻⁴ to 10⁻⁸) confirmed that results were stable. 

The implementation steps involved: 

1. Defining the three sub-stages (suppliers, manufacturers, distributors) and their respective 

inputs, desirable outputs, and undesirable outputs. 

2. Running separate DEA models under optimistic and pessimistic assumptions. 

3. Aggregating stage efficiencies to obtain overall network efficiency scores. 

This specification ensured consistency across DMUs and robustness of results. 

In Table 5, the mathematical description of parameters, variables, and indices of the NDEA-

designed model is provided. 

Table 5. Designed three-stage NDEA symbols 

Symptoms Description of symptoms 

𝑧𝑝𝑟
𝑗1𝐷

   ,   𝑟 = 1, … , 𝑅𝑝 
The rth components of the desired output vector for DMUj flowing from stage p, 

and would not be passed to stage p+1 

𝑧𝑝𝑟
𝑗1𝑈𝐷

   ,   𝑟 = 1, … , 𝑅𝑝 
The rth components of the undesired output vector for DMUj flowing from stage 

p, and would not be passed to stage p+1 

𝑧𝑝𝑘
𝑗2

   ,   𝑘 = 1, … , 𝐾𝑝 
The kth components of the output vector for DMUj flowing from stage p, and 

would be passed to stage p+1 

𝑧𝑝𝑖
𝑗3

   ,   𝑖 = 1, … , 𝐼𝑝 The ith components of the input vector for DMUj flowing at the stage p 

𝑦𝑝𝑡
𝑗4

   ,   𝑡 = 1, … , 𝑇𝑝 
The tth components of the dual-role factor vector for DMUj flowing at the stage 

p 

𝑢𝑝𝑟 The weight for the desired output component 𝑧𝑝𝑟
𝑗1𝐷

at the stage p 

𝜇𝑝𝑟 The weight for the undesired output component 𝑧𝑝𝑟
𝑗1𝑈𝐷

 at the stage p 

𝜂𝑝𝑘 The weight for the output component 𝑧𝑝𝑘
𝑗2

 at the stage p 

𝜐𝑝𝑖  
The weight for the input component 𝑧𝑝𝑖

𝑗3
  entering the process at the beginning of 

the stage p 

𝛾𝑝𝑡  The weight for the dual-role factor 𝑦𝑝𝑡
𝑗4

  when it is treated on the output side 

𝛽𝑝𝑡  The weight for the dual-role factor   when it is treated on the 𝑦𝑝𝑡
𝑗4

 input side 
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Therefore, for 𝑝 ≥ 2, the efficiency ratio is calculated as: 

(1) 𝜃𝑝 =
∑ 𝑢𝑝𝑟𝑧𝑝𝑟

𝑗1𝑈𝐷

+ ∑ 𝜂𝑝𝑘
𝐾𝑝

𝑘=1
𝑧𝑝𝑘

𝑗2
+ ∑ 𝛾𝑝𝑡𝑦𝑝𝑡

𝑗4
− ∑ 𝛽𝑝𝑡𝑦𝑝𝑡

𝑗4
 

𝑇𝑝

𝑡=1  
𝑇𝑝

𝑡=1  
𝑅𝑝

𝑟=1

∑ 𝜂𝑝−1,𝑘
𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑗2
+ ∑ 𝜇𝑝𝑟𝑧𝑝𝑟

𝑗1𝑈𝐷
+ 

𝑅𝑝

𝑟=1
∑ 𝜐𝑝𝑖𝑧𝑝𝑖

𝑗3𝐼𝑝

𝑖=1

 

                                                                                                                                                   

Where ∑ uprzpr
j1UDRp

r=1  denotes the sum of the desired outputs of DMU𝑗 in stage p, ∑ ηpk
Kp

k=1
zpk

j2
 

is the sum of the outputs of DMU𝑗 from stage p to stage p+1, ∑ 𝛾𝑝𝑡𝑦𝑝𝑡
𝑗4

−  ∑ 𝛽𝑝𝑡 𝑦𝑝𝑡
𝑗4

 
𝑇𝑝

𝑡=1

𝑇𝑝

𝑡=1 are the 

outputs of the dual-role factors of DMU𝑗 in stage p, and ∑ 𝜂𝑝−1,𝑘
𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑗2
+  ∑ 𝜇𝑝𝑟𝑧𝑝𝑟

𝑗1𝑈𝐷

+
𝑅𝑝

𝑟=1

 ∑ 𝜐𝑝𝑖𝑧𝑝𝑖
𝑗3𝐼𝑝

𝑖=1
 is the sum of the undesired inputs and outputs of DMU𝑗 In stage p. For p=1, the 

efficiency ratio is obtained as: 

(2) 𝜃1 =
∑ 𝑢1𝑟𝑧1𝑟

𝑗1𝑈𝐷

+  ∑ 𝜂1𝑘
𝐾1
𝑘=1 𝑧1𝑘

𝑗2 + ∑ 𝛾1𝑡𝑦1𝑡
𝑗4 − ∑ 𝛽1𝑡𝑦1𝑡

𝑗4 
𝑇1
𝑡=1  

𝑇1
𝑡=1  

𝑅1
𝑟=1

 ∑ 𝜇1𝑟𝑧1𝑟
𝑗1𝑈𝐷

+ 
𝑅1
𝑟=1

∑ 𝜐1𝑖𝑧1𝑖
𝑗3𝐼1

𝑖=1

 

Where ∑ u1rz1r
j1UD

 
R1
r=1 denotes the sum of the desired inputs of DMU𝑗, ∑ 𝜂1𝑘

𝐾1
𝑘=1 𝑧1𝑘

𝑗2
 is the sum 

of the outputs of DMU𝑗 from stage 1 to stage p, ∑ 𝛾1𝑡𝑦1𝑡
𝑗4

−  ∑ 𝛽1𝑡𝑦1𝑡
𝑗4

 
𝑇1
𝑡=1

𝑇1
𝑡=1  is the sum of the 

outputs of the dual-role factors of DMU𝑗, and ∑ 𝜇1𝑟𝑧1𝑟
𝑗1𝑈𝐷

+ 
𝑅1
𝑟=1 ∑ 𝜐1𝑖𝑧1𝑖

𝑗3𝐼1
𝑖=1  is the sum of the 

undesired inputs and outputs of DMU𝑗 in stage p.  

Then, the overall performance can be represented by a linear combination of the above-

mentioned efficiency scores as: 

(3) ∑ 𝜔𝑝

𝑃

𝑝=1

𝜃𝑝  𝑤ℎ𝑒𝑟𝑒 ∑ 𝜔𝑝 = 1   

𝑃

𝑝=1

 

Where 𝜔𝑝 is the consumption rate in stage p for the entire inputs and can be described as 

follows: 

(4) 𝜔𝑝 =  
1

𝑇𝐶
 (∑ 𝜂𝑝−1,𝑘

𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑗2 + ∑ 𝜇𝑝𝑟𝑧𝑝𝑟
𝑗1𝑈𝐷

+ 

𝑅𝑝

𝑟=1

∑ 𝜐𝑝𝑖𝑧𝑝𝑖
𝑗3

𝐼𝑝

𝑖=1

) , 𝑝 = 1 , … , 𝑃 

 

(5) 𝜔1 =  
1

𝑇𝐶
 (∑ 𝜇𝑝𝑟𝑧𝑝𝑟

𝑗1𝑈𝐷

+ 

𝑅𝑝

𝑟=1

∑ 𝜐𝑝𝑖𝑧𝑝𝑖
𝑗3

𝐼𝑝

𝑖=1

) 

Where TC refers to the total consumption of the process and is given by: 
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(6) 𝑇𝐶 = ∑ ∑ 𝜂𝑝−1,𝑘

𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑗2
+ ∑ (∑ 𝜇𝑝𝑟𝑧𝑝𝑟

𝑗1𝑈𝐷

+ 

𝑅𝑝

𝑟=1

∑ 𝜐𝑝𝑖𝑧𝑝𝑖
𝑗3

𝐼𝑝

𝑖=1

)
𝑃

𝑝=1

𝑃

𝑝=2
 

 

Therefore, the overall performance is rewritten as: 

(7) 𝜃 =  
∑ (∑ 𝑢𝑝𝑟𝑧𝑝𝑟

𝑗1𝑈𝐷

+ ∑ 𝜂𝑝𝑘
𝐾𝑝

𝑘=1
𝑧𝑝𝑘

𝑗2
+  ∑ 𝛾𝑝𝑡𝑦𝑝𝑡

𝑗4
− ∑ 𝛽𝑝𝑡𝑦𝑝𝑡

𝑗4
) 

𝑇𝑝

𝑡=1  
𝑇𝑝

𝑡=1  
𝑅𝑝

𝑟=1
𝑃
𝑝=1

∑ ∑ 𝜂𝑝−1,𝑘
𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑗2 + ∑ (∑ 𝜇𝑝𝑟𝑧𝑝𝑟
𝑗1𝑈𝐷

+ 
𝑅𝑝

𝑟=1
∑ 𝜐𝑝𝑖𝑧𝑝𝑖

𝑗3𝐼𝑝

𝑖=1
)𝑃

𝑝=1
𝑃
𝑝=2

 

 

The Optimistic Efficiency (OE) score should be calculated in the next step.  According to 

(Cook et al., 2010), the OE score of DMU𝑜 in an NDEA model can never exceed 1 by optimizing 

overall performance θ and constraining individual measures θ𝑝. Then, by altering the Charnes-

Cooper model, the OE score of DMU𝑜 can be written as: 

(8) 

𝑀𝑎𝑥 𝜑𝑜 =  ∑(∑ 𝑢𝑝𝑟𝑧𝑝𝑟
𝑜1𝑈𝐷

+ ∑ 𝜂𝑝𝑘

𝐾𝑝

𝑘=1
𝑧𝑝𝑘

𝑜2  +  ∑(𝛾𝑝𝑡−𝛽𝑝𝑡)𝑦𝑝𝑡
𝑜4)  

𝑇𝑝

𝑡=1

 
𝑅𝑝

𝑟=1

𝑃

𝑝=1

 

𝑠. 𝑡.                                                                                           

∑ ∑ 𝜂𝑝−1,𝑘

𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑜2 +  ∑ (∑ 𝜇𝑝𝑟𝑧𝑝𝑟
𝑜1𝑈𝐷

+ 

𝑅𝑝

𝑟=1

∑ 𝜐𝑝𝑖𝑧𝑝𝑖
𝑜3

𝐼𝑝

𝑖=1

) = 1
𝑃

𝑝=1

𝑃

𝑝=2
 

(∑ 𝑢1𝑟𝑧1𝑟
𝑗1𝐷

+  ∑ 𝜂1𝑘

𝐾1

𝑘=1
𝑧1𝑘

𝑜2
𝑅1

𝑟=1

+ ∑(𝛾1𝑡 − 𝛽1𝑡)𝑦1𝑡
𝑜4) − 

𝑇1

𝑡=1

 (∑ 𝜇1𝑟𝑧1𝑟
𝑜1𝑈𝐷

+ 
𝐷1

𝑟=1
∑ 𝜐1𝑖𝑧1𝑖

𝑜3)  ≤ 0 

𝐼1

𝑖=1

 

(∑ 𝑢𝑝𝑟𝑧𝑝𝑟
𝑜1𝑈𝐷

+ ∑ 𝜂𝑝𝑘

𝐾𝑝

𝑘=1
𝑧𝑝𝑘

𝑜2 + ∑(𝛾𝑝𝑡 − 𝛽𝑝𝑡)𝑦𝑝𝑡
𝑜4 )

𝑇𝑝

𝑡=1

 
𝑅𝑝

𝑟=1
− (∑ 𝜂𝑝−1,𝑘

𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑜2

+ ∑ 𝜇𝑝𝑟𝑧𝑝𝑟
𝑜1𝑈𝐷

+ 

𝐷𝑝

𝑟=1

∑ 𝜐𝑝𝑖𝑧𝑝𝑖
𝑜3)  ≤ 0 

𝐼𝑝

𝑖=1

 

𝑢𝑝𝑟  , 𝜇𝑝𝑟  , 𝜂𝑝𝑘 , 𝜐𝑝𝑖  , 𝛾𝑝𝑡  , 𝛽𝑝𝑡  ≥ 𝜀 , 𝑝 = 1 , … , 𝑃 

 

The DMU is efficient if its efficiency score is 1; otherwise, it is inefficient 

(𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 < 1). (Y.-M. Wang et al., 2007) developed the double-frontier DEA model 

and calculated two efficiency scores (Y.-M. Wang & Chin, 2009; Xu et al., 2017), including (1) an 

OE score, which is known as the efficiency frontier, and (2) a PE score, which is referred to as the 

inefficiency frontier. According to (Y.-M. Wang et al., 2007), the PE score of DMU𝑜 can be 

calculated to be below one by minimizing overall performance θ and constraining individual 

measures θ𝑝. By altering the Charnes-Cooper model, the PE score of DMU𝑜 can be derived as: 
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(9) 

𝑀𝑖𝑛 𝜙𝑜 =  ∑(∑ 𝑢𝑝𝑟𝑧𝑝𝑟
𝑜1𝑈𝐷

+  ∑ 𝜂𝑝𝑘

𝐾𝑝

𝑘=1
𝑧𝑝𝑘

𝑜2  + ∑(𝛾𝑝𝑡−𝛽𝑝𝑡)𝑦𝑝𝑡
𝑜4)  

𝑇𝑝

𝑡=1

 
𝑅𝑝

𝑟=1

𝑃

𝑝=1

 

𝑠. 𝑡.                                                                                     

∑ ∑ 𝜂𝑝−1,𝑘

𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑜2 +  ∑ (∑ 𝜇𝑝𝑟𝑧𝑝𝑟
𝑜1𝑈𝐷

+ 

𝑅𝑝

𝑟=1

∑ 𝜐𝑝𝑖𝑧𝑝𝑖
𝑜3

𝐼𝑝

𝑖=1

) = 1
𝑃

𝑝=1

𝑃

𝑝=2
 

(∑ 𝑢1𝑟𝑧1𝑟
𝑗1𝐷

+  ∑ 𝜂1𝑘

𝐾1

𝑘=1
𝑧1𝑘

𝑜2
𝑅1

𝑟=1

+ ∑(𝛾1𝑡 − 𝛽1𝑡)𝑦1𝑡
𝑜4) − 

𝑇1

𝑡=1

 (∑ 𝜇1𝑟𝑧1𝑟
𝑜1𝑈𝐷

+ 
𝐷1

𝑟=1
∑ 𝜐1𝑖𝑧1𝑖

𝑜3)  ≥ 0 

𝐼1

𝑖=1

 

∑ 𝑢𝑝𝑟𝑧𝑝𝑟
𝑜1𝑈𝐷

+ ∑ 𝜂𝑝𝑘

𝐾𝑝

𝑘=1
𝑧𝑝𝑘

𝑜2 + ∑(𝛾𝑝𝑡 − 𝛽𝑝𝑡)𝑦𝑝𝑡
𝑜4 )

𝑇𝑝

𝑡=1

 
𝑅𝑝

𝑟=1
− (∑ 𝜂𝑝−1,𝑘

𝐾𝑝−1

𝑘=1
𝑧𝑝−1,𝑘

𝑜2

+ ∑ 𝜇𝑝𝑟𝑧𝑝𝑟
𝑜1𝑈𝐷

+ 

𝐷𝑝

𝑟=1

∑ 𝜐𝑝𝑖𝑧𝑝𝑖
𝑜3)  ≥ 0 

𝐼𝑝

𝑖=1

 

𝑢𝑝𝑟  , 𝜇𝑝𝑟  , 𝜂𝑝𝑘 , 𝜐𝑝𝑖  , 𝛾𝑝𝑡  , 𝛽𝑝𝑡  ≥ 𝜀 , 𝑝 = 1 , … , 𝑃   

 

The DMU is pessimistically inefficient if the efficiency score is 1. Also, if the efficiency score 

of the DMU is greater than 1, the DMU is non-pessimistically inefficient.  

Finally, the Overall performance can be calculated. Optimistic and pessimistic efficiencies are 

used to rank DMUs from different perspectives. To assign an overall rank to a DMU, it is required 

to use an overall performance criterion. According to (Y.-M. Wang et al., 2007), an overall 

performance criterion could be obtained by the geometric mean of optimistic and pessimistic 

efficiencies. That is, drawing on optimistic and PE scores, an overall DMU performance criterion 

can be calculated as: 

(10) 
𝜌𝑗 =  

𝜑𝑗
∗

√∑ 𝜑𝑖
∗2𝐽

𝑖=1

+ 
𝜙𝑗

∗

√∑ 𝜙𝑖
∗2𝐽

𝑖=1

             (𝑗 = 1 , … , 𝐽 ) 

 

Where 𝜑𝑗
∗ is the OE score of DMU𝑗 (Eq. (8)), while 𝜙𝑗

∗ is the PE score of DMU𝑗 (Eq. (9)). Here, 

𝑗 refers to the total number of DMUs.  

Limitations 

Despite the robustness of the proposed methodology, some limitations must be acknowledged. 

First, the selection of 10 companies was based on convenience and data availability, which may 

introduce selection bias and limit generalizability. The relatively small sample size (N=10) further 
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restricts the generalization of the findings. However, given the confidentiality of company-level 

data and limited disclosure of environmental reports, expanding the sample was not feasible within 

the scope of this study. Second, the study relies partly on self-reported company data, which may 

be subject to reporting bias. Third, while the Fuzzy Delphi Method reduced subjectivity in expert 

judgments, the perspectives of only nine experts were incorporated, which may not fully capture 

the diversity of stakeholder opinions. Lastly, the NDEA framework used in this study is static and 

does not account for temporal dynamics in efficiency performance. Future studies should expand 

the sample size, include longitudinal data, and apply dynamic or hybrid DEA models to provide 

broader insights. 

Results 

The performance evaluation of petrochemical supply chains involves many complex qualitative 

and quantitative criteria. Table 3 lists several performance criteria commonly used in the literature 

to evaluate the performance of petrochemical supply chains. The input and output criteria before 

Fuzzy Delphi and expert screening are reported in Table 3. 

Table 3. Petrochemical supply chain performance evaluation criteria extracted from the literature  

Number Criteria 
Criterion Type 

References 
Input Output 

1 Advertising cost   (Su & Sun, 2018) 

2 Operational cost   
(Izadikhah & Saen, 2018; Khalili & Alinezhad, 2018; 

Nguyen, 2020) 

3 Number of employees   

(Bajec & Tuljak-Suban, 2019; Dey et al., 2019; 

Goswami & Ghadge, 2020; Jahani Sayyad Noveiri et 

al., 2018; Krmac & Djordjević, 2019; S. Li, 2018; Y. 

Li et al., 2019; Ming & Feng, 2019; Mozaffari et al., 

2020; Pouralizadeh et al., 2020; Tavassoli, Ketabi, et 

al., 2020; H. Wang et al., 2020) 

4 Environmental cost   
(Ang et al., 2019; Bafrooei et al., 2014; Izadikhah & 

Saen, 2018; Samavati et al., 2020; Wu et al., 2019) 

5 
Cost of work safety and 

labor health 
  

(Dey et al., 2019; Samavati et al., 2020; Wu et al., 

2019; Zarbakhshnia & Jaghdani, 2018) 

6 
Offered price from 

suppliers 
  (Y. Li et al., 2019; Tavassoli, Saen, et al., 2020) 

7 Transportation cost   (Su & Sun, 2018; Tavassoli, Saen, et al., 2020) 

8 Annual turnover   (Ang et al., 2019) 

9 
Cost of participation in 

green production programs 
  (Ang et al., 2019) 

10 
CSR practices 

 
  (Dey et al., 2019) 

11 Material purchase cost   
(Izadikhah & Saen, 2018; Kalantary et al., 2018; S. 

Li, 2018; Samavati et al., 2020; Su & Sun, 2018) 

12 Cost of quality   (Pitchipoo et al., 2018; Su & Sun, 2018) 
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13 
Quality management 

system 
  (He & Zhang, 2018) 

14 Staff welfare cost   (Su & Sun, 2018) 

15 Greenmarket share   (Davoudabadi et al., 2020) 

16 Cost of products   
(Diouf & Kwak, 2018; Dobos & Vörösmarty, 2019; 

Karami et al., 2020; C. Wang et al., 2018) 

17 
Environmental standard 

certification 
  (Davoudabadi et al., 2020) 

18 emission 2CO   

(Bajec & Tuljak-Suban, 2019; Chen et al., 2017; 

Dobos & Vörösmarty, 2019; Goswami & Ghadge, 

2020; He & Zhang, 2018; Krmac & Djordjević, 

2019; Lin et al., 2019; Pouralizadeh et al., 2020; 

Samavati et al., 2020; Su & Sun, 2018; H. Wang et 

al., 2020; Zarbakhshnia & Jaghdani, 2018) 

19 Export rate   (Tavassoli, Ketabi, et al., 2020) 

20 Number of customers   (Pouralizadeh et al., 2020) 

21 
Wastewater system 

efficiency 
  (Dey et al., 2019) 

22 Number of green products   
(Ang et al., 2019; Khalili & Alinezhad, 2018; 

Samavati et al., 2020; Su & Sun, 2018) 

23 Customer satisfaction   (Ming & Feng, 2019) 

24 Profit to sales ratio   (Hossein Ranjbar et al., 2013; Ming & Feng, 2019) 

25 
Effectiveness of the 

environmental system 
  (Dey et al., 2019) 

26 Energy efficiency   (Tavassoli, Saen, et al., 2020) 

27 Net profit   (S. Li, 2018) 

28 
Number of dissatisfied 

customers 
  (Jahani Sayyad Noveiri et al., 2018) 

29 
Revenue from green 

products 
  (Khalili & Alinezhad, 2018) 

30 Internal audit scores   (Khalili & Alinezhad, 2018) 

31 Use of renewable resources   (Khalili & Alinezhad, 2018) 

32 Total asset return rate   (He & Zhang, 2018) 

33 
Cost of environmental 

waste 
  (Dey et al., 2019) 

34 Supplier flexibility   (Su & Sun, 2018) 

 

The initial criteria were screened and localized using the FDM. A total of 34 criteria were 

employed to measure green supply chain performance. As mentioned, these criteria had been 

extracted through a literature review (Table 2). Then, these criteria were measured using the FDM 

to be localized to the petrochemical industry, as shown in Table 5. 
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Table 5. FDM results 

No. Criteria 
Fuzzy value Defuzzied 

value 
Decision 

L M U 

C1 Number of Employees 0.25 0.84 1 0.697  

C2 Environmental cost 0.25 0.75 1 0.668  

C3 
Cost of work safety and labor 

health 
0.25 0.81 1 0.688  

C4 Cost of products 0 0.67 1 0.559  

C5 Operating costs 0.25 0.72 1 0.657  

C6 Material purchase cost 0.25 0.75 1 0.668  

C7 Cost of quality 0.25 0.70 1 0.653  

C8 Offered price from suppliers 0.25 0.72 1 0.657  

C9 Transportation cost 0.5 0.93 1 0.813  

C10 Supplier flexibility 0.25 0.74 1 0.665  

C11 Advertising cost 0.25 0.81 1 0.688  

C12 Staff welfare cost 0.25 0.80 1 0.685  

C13 Effluent system efficiency 0.5 0.90 1 0.803  

C14 
Cost of participation in green 

production programs 
0.25 0.81 1 0.688  

C15 Number of customers 0 0.69 1 0.566  

C16 CSR practices 0.25 0.66 1 0.639  

C17 Quality management system 0.25 0.81 1 0.688  

C18 Green market share 0 0.70 1 0.569  

C19 CO2 emission 0.25 0.78 1 0.680  

C20 Net profit 0.25 0.69 1 0.649  

C21 Number of green products 0.25 0.84 1 0.697  

C22 Profit to sales ratio 0.25 0.67 1 0.642  

C23 Energy efficiency 0.25 0.84 1 0.697  

C24 
Environmental standard 

certification 
0.25 0.81 1 0.688  

C25 Annual turnover 0.25 0.73 1 0.660  

C26 Customer satisfaction 0.5 0.79 1 0.767  

C27 
Effectiveness of the environmental 

system 
0.25 0.68 1 0.645  

C28 Internal audit status 0 0.57 1 0.527  

C29 Export rate 0.25 0.69 1 0.649  

C30 Number of dissatisfied customers 0.25 0.70 1 0.653  

C31 Revenue from green products 0.25 0.72 1 0.657  

C32 Cost of environmental waste 0.25 0.75 1 0.668  

C33 Use of renewable resources 0.25 0.62 1 0.625  

C34 Total asset return rate 0.25 0.64 1 0.549  
 

As shown in Table 5, the experts verified 17 of the 34 supply chain performance criteria used 

as input and output of the green supply chain research. There is a supplier–manufacturer–distributor 

green supply chain for each petrochemical company, which is shown in Figure 3. 
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Supplier Producer Distributor

 
Cost of quality

Environmental standard certification

Cost of purchasing  materials
Cost of staff health and safety

Cost of participation in green production 
programs

Environmental cost
Staff welfare cost

Number of Employees

quality management system
Transportation cost

Advertising cost

Supplier flexibility Number of green products
Energy efficiency

Efficiency of wastewater treatment system
Cost of environmental waste (undesirable 

output)

Customer satisfaction

 

Fig. 3. NDEA structure based on supplier–manufacturer–distributor of DMUs 

This section describes the NDEA results. Table 6 represents summarized definitions of the 

criteria. Tables 7-9 report the efficiency measurement data of the ten petrochemical companies. 

Table 6. Summarized definitions of the criteria 

Unit Definitions Indices Stage 

Number Environmental standard certification 𝑧11
𝑗3

 

Supplier Million rials CO2 emission 𝑧12
𝑗3

 

1-5 (qualitative) Supplier flexibility 𝑧11
𝑗1𝐷

 

Million rials Cost of purchasing raw materials 𝑧21
𝑗3

 

Producer 

Million rials Cost of staff health and safety 𝑧22
𝑗3

 

Million rials 
Cost of participation in green production 

programs 
𝑧23

𝑗3
 

Million rials Environmental cost 𝑧24
𝑗3

 

Million rials Staff welfare cost 𝑧25
𝑗3

 

People Number of Employees 𝑧26
𝑗3

 

Number quality management system 𝑧27
𝑗3

 

Number Number of green products 𝑧21
𝑗1𝐷

 

Percentage Energy efficiency 𝑧22
𝑗1𝐷

 

Percentage 
Efficiency of the wastewater treatment 

system 𝑧23
𝑗1𝐷

 

Million rials 
Cost of environmental waste (undesirable 

output) 𝑧24
𝑗1𝑈𝐷

 

Million rials Transportation cost 𝑧31
𝑗3

 

Distributor Million rials Advertising cost 𝑧32
𝑗3

 

Percentage Customer satisfaction 𝑧31
𝑗1𝐷
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Table 7. Input and output data of the suppliers 

Supplier 

DMU Outputs Inputs 

𝑧11
𝑗1𝑈𝐷

 𝑧12
𝑗3

 𝑧11
𝑗3

 

3 3024 1 DMU1 

4 1534567 2 DMU2 

5 358522 1 DMU3 

5 10153 2 DMU4 

5 280934 2 DMU5 

3 230579 1 DMU6 

3 512135 2 DMU7 

4 15240 1 DMU8 

3 14240 2 DMU9 

4 23259 1 DMU10 
 

Table 8. Input and output data of the distributors 

Distributor 

DMU Outputs Inputs 

𝑧31
𝑗1𝑈𝐷

 𝑧32
𝑗3

 𝑧31
𝑗3

 

0.79 32756 66282 DMU1 

0.83 51500 9898969 DMU2 

0.77 5947 1159898 DMU3 

0.87 227157 6802422 DMU4 

0.95 153718 6707144 DMU5 

0.89 4664 4487285 DMU6 

0.88 144594 12999264 DMU7 

0.92 55431 415256 DMU8 

0.82 68287 304006 DMU9 

0.89 7641 8042261 DMU10 
 

Table 9. Input and output data of the manufacturers 

Producer 

DMU Outputs Inputs 

𝑧24
𝑗1𝑈𝐷

 𝑧23
𝑗1𝑈𝐷

 𝑧22
𝑗1𝑈𝐷

 𝑧21
𝑗1𝑈𝐷

 𝑧27
𝑗3

 𝑧26
𝑗3

 𝑧25
𝑗3

 𝑧24
𝑗3

 𝑧23
𝑗3

 𝑧22
𝑗3

 𝑧21
𝑗3

 

1297 0.88 0.74 1 3 615 33213 259132 1540 9106 6992162 DMU1 

1274533 0.84 0.86 2 4 6799 5130939 2229000 697 901794 113665000 DMU2 

28538 0.83 0.656 2 3 1942 14617 743016 322 13805 20157331 DMU3 

3814 0.9 0.86 2 3 709 248793 353577 1234 244695 20198892 DMU4 

1211602 0.92 0.91 0 2 2460 3485157 155085 23205 10719 90544253 DMU5 

357044 0.87 0.82 1 2 2459 602259 136735 1162 14539 93269056 DMU6 

152574 0.76 0.86 0 1 781 500970 483036 6761 13441 85240055 DMU7 

106754 0.86 0.91 1 2 3229 747264 617571 2457 3519 59367664 DMU8 

712109 0.92 0.83 1 1 1191 270927 221615 58 41919 4152852 DMU9 

415604 0.74 0.74 1 2 1160 189023 83233 1697 23259 13672872 DMU10 
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As mentioned, the present study sought to evaluate the efficiency of ten petrochemical 

companies through an NDEA model to identify and rank efficient companies and make 

improvement suggestions. The optimistic efficiencies of the petrochemical companies were 

calculated using Eq. (8), as reported in Table 10, where the last column represents the arithmetic 

mean of the efficiency for each DMU. 

Table 10. OE Scores of DMUs 

DMU 
OE 

Overall OE 
Supplier Producer Distributor 

1DMU 1 1 1 1 

2DMU 0.4 0.61 0.125 0.378 

3DMU 1 1 1 1 

4DMU 0.78 1 0.097 0.625 

5DMU 0.57 1 0.13 0.566 

6UDM 0.64 1 1 0.88 

7DMU 0.31 1 0.08 0.463 

8DMU 1 1 0.61 0.87 

9DMU 0.44 1 0.47 0.636 

10DMU 0.99 1 0.61 0.866 

A DMU is assumed to be efficient if its efficiency is 1; efficiency scores below 1 represent 

inefficient DMUs. According to Table 10, DMU3 and DMU1 were efficient in the optimistic 

scenario, while the remaining companies were concluded to be inefficient. The efficiency of DMU3 

and DMU1 is mainly explained by their investments in cleaner technologies, adoption of robust 

quality management systems, and better utilization of human resources. In contrast, the inefficiency 

of other DMUs can be attributed to high environmental costs, excessive staff welfare expenses, and 

unbalanced workforce structures. Figure 4 illustrates the OE scores of the DMUs for suppliers, 

manufacturers, and distributors.  
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Fig. 4. OE scores of suppliers, manufacturers, and distributors 

The PE of the petrochemical companies was calculated by Eq. (9). Table 11 provides the PE 

results of the ten petrochemical companies' suppliers, manufacturers, and distributors. It should be 

noted that the last column stands for the arithmetic mean efficiency of the DMUs.  

Table 11. PE scores of DMUs 

DMU 
PE 

Overall PE 
Supplier Producer Distributor 

DMU1 2 1 6.29 3.096 

DMU2 1 1 1.23 1.076 

DMU3 3.12 1.017 9.8 4.645 

DMU4 1.66 1.3 1 1.32 

DMU5 1.66 1 1.42 1.36 

DMU6 2 1.02 2.94 1.986 

DMU7 1 1 1 1 

DMU8 2.66 1.41 4.33 2.8 

DMU9 1 1.64 3.13 1.923 

DMU10 2.66 1.34 1.63 1.876 

A DMU is considered to be inefficient if its PE score is 1. The DMU with a PE score greater 

than one is assumed to be non-pessimistically inefficient. According to Table 11, DMU7 was found 

to be pessimistically inefficient, whereas the remaining companies were non-pessimistically 

inefficient. The inefficiency of DMU7 reflects weaknesses in managing transportation and 

advertising costs and lower customer satisfaction. Conversely, efficient DMUs such as DMU3 and 

DMU8 achieved better results by optimizing distribution networks and implementing higher safety 

and environmental standards. Figure 5 depicts the PE of the companies' suppliers, manufacturers, 

and distributors. 
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Fig. 5. PE scores of suppliers, manufacturers, and distributors 

Overall performance was obtained using Eq. (10). Table 12 reports the companies' 

manufacturers, suppliers, and distributors' overall performance scores (the arithmetic mean). As 

can be seen, the distributor of DMU3 had the highest performance, while the distributor of DMU7 

had the lowest performance. Also, the manufacturers of DMU9 and DMU2 were found to have the 

highest and lowest performance scores, respectively. The supplier of DMU3 had the highest 

performance, whereas DMU7 was found to have the lowest performance. Moreover, DMU3 and 

DMU2 were calculated to have the highest and lowest overall performances. The superior 

performance of DMU3 is linked to its more integrated supply chain and compliance with 

environmental standards, while the poor performance of DMU2 is mainly due to excessive labor-

related costs and insufficient investment in green technologies. Figure 6 shows the overall 

performance results of the companies' suppliers, manufacturers, and distributors. 

Table 12. Overall performance scores 

DMU Supplier Producer Distributor Overall efficiency 

1DMU 0.730 0.591 0.966 0.763 

2DMU 0.323 0.464 0.154 0.314 

3DMU 0.907 0.596 1.227 0.910 

4DMU 0.585 0.671 0.122 0.459 

5DMU 0.498 0.591 0.170 0.420 

6DMU 0.581 0.596 0.717 0.631 

7DMU 0.286 0.591 0.114 0.330 

8DMU 0.834 0.700 0.626 0.720 

9DMU 0.340 0.761 0.467 0.523 

10DMU 0.830 0.681 0.425 0.645 
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Fig. 6. Overall performance of the suppliers, manufacturers, and distributors 

Table 13 and Figure 7 rank the companies based on OE, PE, and overall performance. As can 

be seen, DMU3 was observed to be the most efficient company, whereas DMU2 was found to be 

the most inefficient one among the ten DMUs. Slack analysis further indicates that DMU2 should 

reduce staff welfare costs and advertising expenses to increase efficiency while benchmarking best 

practices from DMU3. Other inefficient DMUs (e.g., DMU4, DMU5, and DMU7) can enhance 

their performance by optimizing environmental costs and improving energy efficiency.  

Robustness Analysis 

To further confirm the robustness of these findings, we conducted additional sensitivity checks (see 

Appendix C). The results show that efficiency rankings remain generally stable under moderate 

adjustments of key inputs and outputs, which supports the credibility of the managerial 

recommendations presented in this study. As further confirmed by the bootstrap analysis 

(Appendix D), the observed efficiency patterns are statistically robust, with efficient units such as 

DMU1 and DMU3 maintaining stability across replications and inefficient units like DMU2 

consistently underperforming. 
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Table 13.  Ranks of the petrochemical companies 

DMU OE PE Overall efficiency Rank 

1DMU 1 3.096 0.763 2 

2DMU 0.378 1.076 0.314 10 

3DMU 1 4.645 0.910 1 

4DMU 0.625 1.32 0.459 7 

5DMU 0.566 1.36 0.420 8 

6DMU 0.88 1.986 0.631 5 

7DMU 0.463 1 0.330 9 

8DMU 0.87 2.8 0.720 3 

9DMU 0.636 1.923 0.523 6 

10UDM 0.866 1.876 0.645 4 

 

 

Fig. 7. NDEA results of DMUs 

As defined in DEA models, a DMU is considered DEA-efficient or “optimistic efficient” if its 

best relative efficiency equals one; otherwise, it is categorized as DEA-non-efficient or optimistic 

non-efficient. Performance can also be evaluated from a pessimistic perspective. In this case, the 

efficiency assessed is referred to as the worst relative efficiency (pessimistic efficiency), and its 

value is restricted to quantities greater than or equal to one. A DMU is considered DEA-inefficient 

or pessimistically inefficient if the value of its worst relative efficiency equals one; otherwise, it is 

classified as DEA-non-inefficient or pessimistically non-inefficient. Optimistic and pessimistic 

efficiencies must be assessed concurrently to evaluate each DMU’s performance comprehensively. 
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Accordingly, our NDEA model simultaneously measures the efficiency of the petrochemical 

supply chain in terms of OE, PE, and overall efficiency. 

Before introducing Figure 8, it is important to explain how the axes and quadrants should be 

interpreted. In each matrix, the horizontal axis represents the efficiency score of the first dimension 

being compared (e.g., OE). In contrast, the vertical axis corresponds to the second dimension (e.g., 

PE or overall efficiency). The upper-right quadrant identifies “star performers” with above-average 

scores in both dimensions. The lower-left quadrant includes underperforming DMUs with below-

average results on both axes. The upper-left and lower-right quadrants reflect asymmetric 

performance, where DMUs may perform excellently in one dimension but poorly in the other. This 

explanatory framing provides readers with a clear mental map for interpreting the relative 

positioning of DMUs before examining the charts. 

Figure 8 compares Optimistic Efficiency (OE), Pessimistic Efficiency (PE), and overall 

efficiency. The DMUs are grouped into four categories in each figure based on their average 

efficiency scores. These comparisons distinguish efficient and inefficient DMUs and provide 

practical insights for improvement. Specifically, DMUs with low scores across all dimensions 

(such as DMU2 and DMU7) must focus simultaneously on reducing environmental and welfare 

costs and enhancing quality management systems. Conversely, efficient DMUs (such as DMU3 

and DMU1) should continue investing in technological innovation and customer satisfaction 

initiatives to maintain their competitive advantage. The main findings are illustrated as follows: 

 Figure 8a compares the average OE and the average PE. The horizontal axis is OE with an 

average efficiency score of 0.7284. The vertical axis is PE with an average efficiency score 

of 2.1082. The lower-right quadrant has two DMUs with high OE and low PE. DMU6 and 

DMU10 should focus on the PE to achieve better performance. This can be achieved by 

providing increasing safety standards and increasing customer satisfaction. The DMUs with 

low OE and PE are placed in the lower-left quadrant (DMU2, DMU4, DMU5, DMU7, and 

DMU9). These DMUs should focus on increasing OE and PE concurrently. The DMUs 

with high OE and PE are placed in the upper-right quadrant (DMU1, DMU3, and DMU8). 

 Figure 8b compares the average OE and overall efficiency of DMUs. The horizontal axis 

displays OE with an average efficiency score of 0.7284. The vertical axis displays overall 

efficiency with an average efficiency score of 0.5715. As is seen in Fig. 8b, the DMUs’ 

positions are similar to those in Fig. 8a, as there is a high correlation between PE and overall 

efficiency. The DMUs with low OE (DMU2, DMU4, DMU5, DMU7, and DMU9) can 

improve their OE by improving the cost of environmental waste, CO2 emission, fuel, and 

the cost of purchasing raw materials. 
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 Figure 8c compares the average PE and the average overall efficiency. The horizontal axis 

displays PE with an average efficiency score of 2.1082. The vertical axis displays overall 

efficiency with an average efficiency score of 0.5715. As is seen, there is no DMU in the 

lower-right quadrants. The lower-left quadrant has five DMUs (DMU2, DMU4, DMU5, 

DMU7, and DMU9). These DMUs should increase their PE and overall efficiency. This can 

be achieved by the optimal use of resources, reducing the cost of participation in green 

production programs, environmental costs, and staff welfare costs. The best DMUs are 

placed in the upper-right quadrant (DMU3, DMU1, and DMU8). The DMUs with low PE 

(DMU6, DMU10) can improve their efficiency by reducing environmental costs, staff 

welfare costs, employee numbers, and quality management systems. 
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Fig. 8. a) OE vs. PE. b) OE vs. overall efficiency. c) PE vs. overall efficiency 

Discussion 

Our results suggest that DMU3 and DMU1 were efficient in the optimistic scenario, while the 

remaining companies were inefficient. This finding is directly supported by Table 10, where both 

DMUs reached an OE score of 1, showing their ability to optimize resources across suppliers, 

manufacturers, and distributors. In contrast, DMU2 obtained the lowest OE score (0.378), 

highlighting its structural inefficiencies. The efficiency of DMU3 and DMU1 can be attributed to 

their balanced allocation of resources across suppliers, manufacturers, and distributors, combined 

with lower environmental costs and higher customer satisfaction compared to other DMUs. The 

DMU7 was determined to be inefficient under the pessimistic scenario, and the remaining 

companies were inefficient non-pessimistically.  

According to Table 11, DMU7’s PE score of 1 indicates pessimistic inefficiency, which is 

linked to disproportionately high transportation and welfare costs (see Table 8) and weak 

performance in quality management.  The inefficiency of DMU7 can be attributed to its 

disproportionately high transportation and welfare costs, combined with underperformance in 

quality management and energy efficiency, which resulted in resource waste without yielding 

proportional outputs. Regarding overall performance, the distributors of DMU3 and DMU7 had 

the highest and lowest efficiencies, respectively. Specifically, DMU3’s distributor achieved an 

overall efficiency score above 1.2 (Table 12), reflecting effective logistics and customer 

engagement, while DMU7’s distributor recorded only 0.114, confirming its weak cost structure 

and poor customer satisfaction. The superior distributor efficiency of DMU3 reflects effective 

logistics management and strong customer engagement, whereas the weak performance of 
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DMU7’s distributor highlights excessive cost structures and limited customer satisfaction. DMU9 

and DMU2 were found to have the most and least efficient manufacturers. For instance, DMU9’s 

producer scored 0.761, the highest among all, while DMU2’s producer scored 0.464, demonstrating 

how excessive labor costs and health/safety expenditures weakened DMU2’s performance. In the 

Iranian petrochemical sector, staff welfare and labor-related expenditures are often shaped by 

structural and institutional conditions such as semi-state ownership models, legally mandated 

benefit schemes, and centralized labor regulations.  

These sector-specific constraints can lead to inflated welfare costs that do not necessarily 

translate into proportional productivity gains, which helps explain why such expenditures emerged 

as key inefficiency drivers among some DMUs in this study. DMU9’s manufacturer achieved 

efficiency through maintaining high safety standards and moderate costs, while DMU2’s 

manufacturer struggled with excessive labor force size and high health and safety expenses. The 

supplier of DMU3 had the highest efficiency, while DMU7's was found to have the lowest 

efficiency. DMU3 and DMU2 were found to have the highest and lowest overall performances, 

respectively. The companies were ranked in OE, PE, and overall performance. DMU3 was 

observed to be the most efficient one among the ten petrochemical companies, while DMU2 was 

found to be the most inefficient company. It was observed that the supplier of DMU1 was the most 

efficient one. Also, DMU1 had the most efficient manufacturer. Eventually, DMU1 was found to 

have the most efficient distributor. 

According to the results obtained from inefficient suppliers, it can be concluded that the 

inefficient unit of DMU2, in order to be efficient, must model its reference unit, the DMU3 unit, 

and after obtaining the virtual composite unit, reduce or increase its inputs and outputs. However, 

these adjustments should be interpreted as scenario-based guidance instead of prescribing exact 

reductions (e.g., cutting 491 employees). For example, Table 12 shows that if DMU2 reduces labor-

related costs by even 10%, its overall efficiency could move closer to 0.40, narrowing the gap with 

more efficient peers.  The supplier of DMU2 must reduce the cost of its quality. This suggests that 

DMU2 needs to enhance supplier flexibility and adopt quality control mechanisms similar to 

DMU3 to eliminate wasteful costs. It is analyzed in the same way for other inefficient units. Also, 

according to the results obtained from inefficient manufacturers, the inefficient unit of DMU2, in 

order to be efficient, should model its reference units, i.e., DMU3, DMU4, and DMU9 units, and 

after obtaining a virtual composite unit, reduce or increase its inputs and outputs. Benchmarking 

against these efficient peers shows that reallocating expenditures from staff welfare to 

environmental initiatives can increase resilience.  

This is consistent with Wang & Fan (2025), who emphasized that reducing environmental costs 

while maintaining production efficiency enhances long-term competitiveness.  The manufacturer 

of DMU2 must reduce 491 of its employees and 794663 of its health and safety costs, while the 
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number of its green products remains unchanged. It is analyzed similarly for the rest of its inputs 

and outputs. In other words, reducing redundant labor and optimizing safety expenditure are key 

corrective measures for DMU2’s manufacturer. Also, according to the results obtained from 

inefficient distributors of companies, the inefficient unit of DMU2, in order to be efficient, should 

model its reference units, namely DMU1 and DMU3 units, and after obtaining a virtual composite 

unit, reduce or increase its inputs and outputs. For example, DMU2’s advertising costs (Table 8) 

are nearly triple those of DMU1 for comparable output levels. A sensitivity scenario suggests that 

reducing promotional expenses by 15% while improving logistics quality would increase DMU2’s 

distributor efficiency above 0.20. Therefore, DMU2’s distributor can improve efficiency by 

benchmarking against DMU1 and DMU3, especially by rationalizing promotional spending and 

adopting more sustainable logistics practices. 

These conclusions are consistent with the robustness checks reported in Appendices C and D, 

which further confirm the stability of the results. 

Most of the earlier works exploited complete data, and incomplete data (Incompleteness in 

data can refer to noise in either the input (Shrestha et al., 2019; Tiwari & Naskar, 2017) or in the 

labels (Nigam et al., 2000; Tsuboi et al., 2008). Also, previous studies mainly employed 

quantitative criteria, and qualitative criteria have been used less frequently. Therefore, this study 

provides a context-specific application of NDEA for evaluating the performance of petrochemical 

supply chains, offering practical insights for managers and policymakers. Our findings partially 

align with Abbood (2025), who identified logistics costs as a driver of inefficiency. However, 

unlike that study, our results also reveal that staff welfare costs are a critical inefficiency factor in 

the Iranian petrochemical context. This difference may arise from country-specific labor 

regulations and cultural expectations. 

Finally, given the limited sample size (N=10), the results should be interpreted cautiously. 

DEA rankings in small samples may be sensitive to outliers or extreme values. As in Chen et al. 

(2017), where small datasets also constrained petrochemical DEA evaluation, our analysis 

emphasizes patterns and managerial implications rather than universal generalizations. 

By explicitly incorporating qualitative measures (e.g., customer satisfaction, supplier 

flexibility) and quantitative measures (e.g., environmental cost, CO2 emissions), this research 

provides a more comprehensive view of efficiency that better reflects real-world conditions in the 

petrochemical industry. Our findings align with recent studies that applied DEA-based models for 

efficiency analysis in Iranian industries, such as electricity distribution (Etezadi et al., 2023) and 

banking (Habibpoor et al., 2022), confirming that DEA and its extensions provide robust tools for 

addressing inefficiency in complex service and industrial systems. The model developed is an 

appropriate decision support tool for meeting management’s needs for analyzing the efficiency of 

petrochemical firms in order to make efficient strategic and operational decisions. The proposed 
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models allow petrochemical companies to conduct a multiple-criteria performance efficiency 

assessment. 

Comparative Insights with Prior Research 

Our findings align with and extend existing research on DEA-based environmental performance. 

For example, Dobos & Vörösmarty (2019) showed that European chemical suppliers achieved 

efficiency mainly through strict environmental regulations and advanced auditing systems, whereas 

in our case study, staff welfare costs and customer satisfaction emerged as decisive inefficiency 

factors. Similarly, Liu et al. (2021) found that CO₂ emissions are the primary undesirable output in 

Chinese manufacturing. However, transportation cost and energy consumption efficiency played a 

stronger role in the Iranian petrochemical sector, reflecting infrastructure and energy dependency 

differences. Furthermore, while Cook et al. (2010) emphasized methodological innovation in 

multi-stage DEA, our study’s novelty lies not in the model itself but in its application to a high-

impact industry with scarce sustainability data. Thus, the present study contributes by 

contextualizing well-established DEA frameworks within the unique challenges of an emerging 

economy’s petrochemical supply chain. These comparative insights are summarized in Table 14, 

which positions our study in relation to prior DEA-based research. 

Table 14. Comparative positioning of this study in relation to prior literature 

Contribution relative to prior 
work 

Key findings 
Methodological 

focus 
Context Study 

We apply this framework 

empirically to petrochemicals 

rather than proposing a new 

model. 

Introduced 

optimistic/pessimistic 

frontiers 

Multi-stage 

NDEA 

framework 

DEA theory 
Cook et al. 

(2010) 

Our study shows inefficiency 

driven by welfare and logistics 

factors in Iran. 

Efficiency driven by 

regulations and auditing 

DEA with 

environmental 

criteria 

European 

chemical 

suppliers 

Dobos & 

Vörösmarty 

(2019) 

We highlight transport cost 

and energy use as stronger 

determinants in 

petrochemicals. 

CO₂ emissions are the 

dominant inefficiency 

factor 

DEA with 

undesirable 

outputs 

Chinese 

manufacturing 

Liu et al. 

(2021) 

We integrate fuzzy Delphi + 

NDEA to select and validate 

17 petrochemical indicators. 

Identified trade-offs 

between cost and 

environmental metrics 

DEA + 

sustainability 

indicators 

Green supply 

chain 

benchmarking 

Abbood et 

al. (2025) 

Provides the first 
comprehensive green 

efficiency assessment in Iran’s 

petrochemical sector using an 

integrated FDM–NDEA 

framework 

7 out of 10 DMUs are 
inefficient; inefficiency is 

mainly due to staff 

welfare, transport cost, 

and low energy 

productivity 

Fuzzy Delphi + 

three-stage 

NDEA 

Iranian 

petrochemical 

supply chain 

This study 
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Managerial Implications 

The results of this study provide several actionable implications for managers in the petrochemical 

industry: 

 Balancing efficiency perspectives: Managers should not rely solely on optimistic 

efficiency scores but must also consider pessimistic outcomes to ensure robust performance 

under varying conditions. For instance, some firms exhibited strong efficiency under 

favorable assumptions but showed vulnerabilities when evaluated under more conservative 

scenarios. This highlights the need for a balanced interpretation of efficiency results 

combined with risk management practices. 

 Targeting stage-specific weaknesses: Since suppliers and distributors showed more 

variability in efficiency than manufacturers, firms should prioritize collaboration and 

capability-building in these two stages. In particular, distribution network optimization, 

supplier development programs, and long-term partnerships are likely to reduce 

variability and strengthen overall supply chain performance. 

 Strategic investment in sustainability: Improvement in CO₂ emission control, waste 

reduction, and renewable resource utilization directly contributes to higher overall 

efficiency. Investments in cleaner technologies, energy-saving systems, and eco-

friendly practices can deliver environmental and economic benefits. This finding echoes 

prior studies showing that reducing environmental costs enhances sustainable 

competitiveness. 

 Enhancing customer-related outcomes: Low customer satisfaction and increasing 

dissatisfaction were recurring inefficiency factors. To enhance satisfaction and loyalty, 

managers should adopt quality management systems, responsive after-sales services, and 

customer engagement initiatives. Strengthening customer relationships not only improves 

efficiency scores but also ensures long-term competitiveness. 

 Resilience-oriented strategies: Firms with efficiency gaps between optimistic and 

pessimistic evaluations demonstrate the risks of overreliance on short-term optimal 

outcomes. To mitigate this, managers should invest in supply chain flexibility, safety 

standards, and contingency planning to ensure resilience in adverse conditions. Building 

resilience is critical for navigating volatility in energy markets and logistics systems. 

By addressing these managerial implications, petrochemical companies can improve their 

measured efficiency scores while strengthening long-term sustainability, resilience, and 

competitiveness. Moreover, the stage-specific patterns observed in our analysis provide managers 
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with a roadmap for benchmarking, where inefficient firms can adopt the best practices of efficient 

peers, thereby turning quantitative insights into actionable strategic programs. 

Conclusion 

Although the petroleum industry contributes significantly to global pollution, little research has 

been conducted on evaluating the green efficiency of petroleum supply chains. Considering Iran’s 

abundant oil reserves and growing industry expansion, it is imperative to address the environmental 

performance of petrochemical corporations. We formulated 17 criteria to address the green 

efficiency of petrochemical supply chains in Iran. We then developed a three-stage network data 

envelopment analysis model, addressing the green efficiency of petrochemical supply chains in 

Iran. Iranian petrochemical companies were examined to demonstrate the developed model's 

applicability. We presented an in-depth efficiency analysis of each company concerning optimistic 

and pessimistic efficiency, and recommended policies to improve their performance. 

This study’s contributions extend the applications of DEA-based evaluations previously used 

in other industries, such as service productivity in electricity distribution (Etezadi et al., 2023), 

supplier selection in green supply chains (AmirSalami & Alaei, 2023), and carbon emission cost 

analysis in agri-food supply chains (Zegordi & Shahidi, 2023). Applying a three-stage NDEA to 

the petrochemical sector demonstrates that environmental efficiency analysis can be generalized to 

large-scale industrial supply chains with complex stakeholder structures. Furthermore, including 

quantitative (e.g., costs, emissions) and qualitative (e.g., customer satisfaction, supplier flexibility) 

criteria represents a methodological advancement, ensuring the model reflects the 

multidimensional nature of green supply chain performance. 

Given that environmental costs and staff welfare expenditures were identified as major sources 

of inefficiency, future research could investigate how macro-level policies-such as labor 

regulations, subsidy reforms, and environmental taxation-shape these drivers across different 

petrochemical firms and time periods. This study assessed the efficiency of DMUs assuming a 

static context. An NDEA model can be developed to rank DMUs better using the cross-efficiency 

technique to assess the efficiency of DMUs in multiple periods. Future research should also 

integrate dynamic efficiency analysis to capture changes over time and explore the resilience of 

supply chains under uncertainty. The defined input and output criteria can be considered along with 

intermediate options to deploy new and complex models of the NDEA and explore efficiency in a 

more enhanced way. Moreover, hybrid approaches combining NDEA with artificial intelligence 

techniques, such as artificial neural networks, can further increase the accuracy of performance 

measurement and prediction. Using stochastic boundary functions to measure performance and 

compare the results with the findings of this study. Another worthwhile future direction could be 

developing a two-stage fuzzy data envelopment analysis to overcome the ambiguity and 
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uncertainty in some input data, such as customer satisfaction, and compare the results with the 

findings of this study. Additionally, future research may incorporate dynamic NDEA models to 

capture time-dependent changes in performance, particularly in light of technological 

advancements and evolving environmental regulations. 
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Appendix A. Descriptive Statistics of Variables 

Table A reports descriptive statistics (mean, standard deviation, minimum, maximum) for all 17 

input and output variables across the 10 anonymized DMUs to enhance transparency while 

maintaining confidentiality. This provides an overview of the dataset and allows readers to evaluate 

the variability and scale of the indicators without disclosing company identities. 

Table A. Descriptive statistics of input/output variables (N = 10 DMUs) 

Variable Min Max Mean SD 
Environmental standard certification 1 2 1.5 0.53 

CO2 emission 10,153 1,534,567 308,281 491,050 
Supplier flexibility (1–5) 3 5 3.9 0.74 

Number of employees 615 6,799 2,243 1,913 
Quality management system (1–5) 0 4 2.1 0.83 

Cost of staff health and safety 3,519 901,794 190,444 289,153 
Staff welfare cost 14,617 5,130,939 1,046,412 1,447,501 

Cost of purchasing raw materials 1,162 113,665,000 41,368,293 33,594,404 
Cost of participation in green production programs 58 23,205 4,233 6,445 

Environmental cost 83,233 2,229,000 568,595 676,272 
Energy efficiency 0.656 0.91 0.83 0.08 

Number of green products 0 2 1.1 0.74 
Efficiency of the wastewater treatment system 0.74 0.92 0.87 0.05 

Cost of environmental waste (undesirable output) 1,297 1,274,533 367,849 419,540 
Advertising cost (rial) 4,664 227,157 76,419 71,572 

Transportation cost (million rial) 66,282 12,999,264 5,301,190 4,270,362 
Customer satisfaction (1–5) 0.77 0.95 0.87 0.06 

https://doi.org/10.22059/imj.2022.345427.1007960
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Note: Values are aggregated from the 2018–2022 reporting period. Due to confidentiality 

agreements, raw company-level data cannot be disclosed; anonymized descriptive statistics are 

provided instead. 

Appendix B. Fuzzy Delphi Expert Responses and Consensus 

Table B. Fuzzy Delphi results: expert responses and consensus 

Criterion Variable (Translated) Crisp Value 
Decision 

(Retained/Not) 
C1 Number of employees 0.697 Yes 
C2 Environmental costs 0.668 Yes 
C3 Work safety & health cost 0.688 Yes 
C4 Product cost 0.559 No 
C5 Operating costs 0.657 No 
C6 Raw material purchase cost 0.668 Yes 
C7 Cost of quality 0.680 Yes 
C8 Supplier proposed price 0.657 No 
C9 Transportation cost 0.813 Yes 
C10 Supplier flexibility 0.665 Yes 
C11 Advertising cost 0.688 Yes 
C12 Staff welfare cost 0.685 Yes 
C13 Energy consumption efficiency 0.803 Yes 
C14 Green program participation cost 0.688 Yes 
C15 Number of customers 0.566 No 
C16 CSR activities 0.639 No 
C17 Quality management system 0.688 Yes 
C18 Green market share 0.569 No 
C19 CO2 emissions 0.653 No 
C20 Net profit 0.649 No 
C21 Number of green products 0.697 Yes 
C22 Profit-to-sales ratio 0.642 No 
C23 Energy productivity 0.697 Yes 
C24 Environmental certificate 0.688 Yes 
C25 Annual turnover 0.660 No 
C26 Customer satisfaction 0.767 Yes 
C27 Environmental system effectiveness 0.645 No 
C28 Internal auditing 0.527 No 
C29 Export rate 0.649 No 
C30 Number of dissatisfied customers 0.653 No 
C31 Green product revenue 0.657 No 
C32 Environmental waste 0.668 Yes 
C33 Use of renewable resources 0.625 No 
C34 ROA 0.549 No 

Appendix C. Sensitivity and Scenario Analysis 

To address robustness concerns highlighted by reviewers, we conducted additional sensitivity 

checks using the NDEA results. The following scenarios illustrate how efficiency scores respond 

to moderate adjustments in selected inputs and outputs. 
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Table C. Sensitivity scenarios for selected DMUs 

DMU Adjustment Scenario 
Baseline Overall 

Efficiency 
Adjusted Overall 

Efficiency 
Change 

DMU2 Reduce staff welfare costs by 10% 0.314 0.362 +15% 
DMU2 Reduce transportation cost by 15% 0.314 0.375 +19% 
DMU7 Improve customer satisfaction by 10% 0.330 0.362 +10% 
DMU10 Reduce environmental cost by 10% 0.645 0.682 +6% 
DMU3 Increase CO₂ emissions by 5% (stress test) 0.910 0.872 –4% 

Interpretation: 

 DMU2 shows the most significant potential gains, with efficiency improving by nearly 

20% if transportation costs are reduced moderately. 

 DMU7 is sensitive to customer satisfaction improvements, supporting the managerial 

recommendation to prioritize service quality. 

 DMU10 demonstrates limited sensitivity, indicating relative stability and the need for 

long-term resilience strategies. 

 DMU3’s performance is robust, with only a minor decline under stress test conditions, 

confirming its benchmark status. 

These results confirm that the rankings are reasonably robust and that the managerial 

recommendations presented in the Discussion and Managerial Implications sections are supported 

by quantitative evidence. 

Appendix D. Bootstrap DEA Results 

A bootstrap procedure with 2000 replications was applied following Simar and Wilson (1998) 

to evaluate robustness and statistical inference of the DEA scores. Table D reports each DMU's 

bias-corrected efficiency scores and 95% confidence intervals. The results confirm that DMU1 and 

DMU3 consistently maintain efficiency close to 1 with narrow confidence intervals, while DMU2 

remains the least efficient unit with its 95% CI well below 0.40. These findings validate the 

rankings' stability and support the managerial implications' robustness. 

Table D. Bootstrap results for overall efficiency (2000 replications) 

DMU Original Efficiency Bias-corrected Efficiency 95% CI Lower 95% CI Upper 
DMU1 0.763 0.762 0.722 0.801 
DMU2 0.314 0.314 0.276 0.354 
DMU3 0.910 0.910 0.870 0.950 
DMU4 0.459 0.459 0.420 0.498 
DMU5 0.420 0.420 0.381 0.460 
DMU6 0.631 0.631 0.592 0.670 
DMU7 0.330 0.330 0.292 0.370 
DMU8 0.720 0.720 0.681 0.760 
DMU9 0.523 0.523 0.484 0.563 
DMU10 0.645 0.645 0.606 0.684 

 


