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Objective: This study aims to evaluate the greenness and efficiency of the Iranian
petrochemical supply chain, a sector that plays a vital role in both economic
performance and environmental sustainability. Despite its importance, limited
studies have comprehensively analyzed this industry’s efficiency using multi-
dimensional and uncertainty-sensitive approaches.

Methods: To address this issue, an integrated Network Data Envelopment
Analysis (NDEA) framework combined with the Fuzzy Delphi Method was
developed to assess the performance of ten leading petrochemical companies in
Iran. Seventeen evaluation criteria were identified and validated, and the
companies were analyzed under optimistic and pessimistic scenarios to capture a
balanced and realistic view of their efficiency.

Results: The findings revealed that only a few companies were efficient under
both scenarios, while others exhibited inefficiencies due to high environmental
costs, excessive employment, and poor-quality management systems. Sensitivity
analysis showed that reducing undesirable outputs and optimizing dual-role
variables significantly improves performance. Efficient companies should also
focus on sustaining competitiveness by optimizing their pessimistic efficiency
scores.

Conclusion: The results suggest that the proposed NDEA-Delphi approach
provides a comprehensive and realistic tool for assessing the green efficiency of
industrial supply chains. This framework can support decision-makers in
identifying improvement areas, reducing resource waste, and developing
environmentally responsible operational strategies in the petrochemical sector.
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Introduction

In the global economy, the petrochemical industry plays a significant role in supplying the world's
chemical product demand. This industry operates in a variety of countries within competitive
business environments. The petrochemical industries are typically large corporations with diverse
stakeholders actively managing their supply chains. This sector focuses on the manufacturing of
chemicals from petroleum as well as chemicals extracted from petroleum refinery byproducts. In
addition to supporting many other industries, including agriculture, automobiles, construction, and
pharmaceuticals, the petrochemical industry contributes significantly to the economy of both
developed and developing countries. It is estimated that 96 percent of all manufactured goods have
traces of chemical manufacturing, according to the American Chemistry (Council, 2019). For an
industry with a high product mix, multiple raw material suppliers, and multiple markets, it is vital
to maintain the efficiency of operations throughout the supply chain to remain competitive. This
realization has led to increasing recognition of the importance of good supply chain management
practices within the petrochemical industry (Yakideh & Moradi, 2023). This is particularly true
with the increasing importance of logistics in the chemical manufacturing industry, becoming ever
more apparent as the cost of logistics in chemicals is rapidly outstripping the cost of other operating
expenses (Z. Wang & Fan, 2024).

Compared to other industries, supply chain management in the petrochemical sector poses
distinct challenges that require technically complex supply chain solutions (Abbood, 2025;
Sayardoost Tabrizi et al., 2024). Petrochemical facilities run on a continuous production line,
creating a stream of goods such as plastics, soaps, fertilizers, and paints that are produced from
crude oil (Z. Wang & Fan, 2025). The raw materials for these products are continually supplied,
and their delivery is scheduled to ensure that manufacturing is not interrupted. Petrochemical goods
are packed in various configurations to accommodate multiple means of transportation, and they
are often flammable or toxic, necessitating careful handling. Similar logistical complexities are
also observed in other large-scale supply chains, where optimization models such as multi-cross-
docking rescheduling can play a vital role in enhancing efficiency (Sahebi et al., 2024). The
enduring necessity to maintain uninterrupted operation of the plants and continuous delivery of
finished goods is the culprit of much of the complexity that prevails within the management of the
supply chain for petrochemicals (Sayardoost Tabrizi et al., 2025). Because of the dynamic nature
of the sector, it is challenging to establish reliable forecasting and schedule the logistics of sourcing,
delivery, and transportation.

To achieve continuous production in the petrochemical industry, selecting the chemical
process route is a key design decision in the early phases of chemical plant development and design.
Economic considerations used to be the primary factor in selecting the chemical process method.
However, environmental risk and industrial safety in the development of petrochemical supply
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chains have recently become two of the most critical planning objectives for the petrochemical
industry. This is attributed to recent overarching concerns of global warming and increasing
awareness of the size of environmental pollution generated by petrochemical industries. As a result
of the potential for harmful environmental impacts caused by the petrochemical sector,
environmental concerns, particularly the green supply chain efficiency of this sector, have risen to
the forefront of national and international strategic policy-making (Yakideh et al., 2024). This is
similar to the trend in governmental regulation of environmental standards and the growing demand
of consumers for green products in the supply chain, which includes the product flow from raw
materials to the delivery of goods to end-consumers along with information flow across the supply
chain, have led to the emergence of the “green supply chain management” concept (Ghasemian
Sahebi et al., 2024; Z. Wang & Fan, 2025).

There has been a scarcity of research on petrochemical supply chain management (Abbood,
2023; Wang & Fan, 2024). Notably, research on understanding the environmental ramifications of
the petrochemical industry is limited (Sayardoost Tabrizi et al., 2025; Yakideh et al., 2024). For
example, (Sayardoost Tabrizi et al., 2025) focused on ranking the petrochemical industry suppliers
in a circular supply chain. (Z. Wang & Fan, 2025) researched the petrochemical industry's adoption
of green technologies and DEA-based evaluations to facilitate more environmentally friendly
processes. Similar multi-criteria decision-making approaches, such as Fuzzy ISM-DEMATEL,
have been effectively applied to identify and prioritize sustainability barriers in renewable energy
supply chains (Ghasemian Sahebi et al., 2024), offering methodological insights for petrochemical
sector studies. Due to the scarcity and uncertainty of data on many chemical production processes,
(Yakideh & Moradi, 2023) estimated crucial production parameters to shed light on the
environmental performance of a chemical manufacturing process by employing mass and energy
flow data.

While existing studies provided insights into issues related to the sustainability of the
petrochemical industry, they are limited in scope and number. Due to the complexity of the
petrochemical supply chain, analyzing performance and decision-making is very challenging.
Similar methodological approaches have also been successfully applied in Iranian industries, such
as service productivity evaluation with DEA-based methods (Etezadi et al., 2023) and efficiency
assessment using the Malmquist productivity index (Habibpoor et al., 2022), which further
highlights the potential of DEA-based frameworks for assessing environmental efficiency. There
is a need for holistic decision-support tools to assist decision-making in the context of the green
efficiency of the petrochemical supply chain. Thus, the novelty of this study lies not in proposing
a new methodological framework but in its innovative application of an integrated Fuzzy Delphi-
NDEA approach to the Iranian petrochemical supply chain, providing a comprehensive and
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context-specific assessment of green efficiency. Thus, this study seeks to answer the following
questions:

RQ (1): How can a relevant set of key performance evaluation criteria for the petrochemical supply
chain be determined?

RQ (2): How can the efficiency of the petrochemical supply chain be evaluated under qualitative
and imprecise criteria?

The rest of this manuscript is organized as follows: Section 2 reviews previous studies on the
efficiency assessment of petrochemical supply chains. Section 3 presents the NDEA model.
Section 4 discusses the results. Section 5 elaborates on the results and highlights managerial
implications. Section 6 concludes this paper and highlights future research directions.

Literature Background

This section: a) reviews key prior studies pertinent to the petrochemical supply chain management
and places these research contributions in context, b) provides theoretical backgrounds of DEA and
NDEA models, and c) reviews previous studies utilizing the DEA technique and highlights its
application to petrochemical supply chains. In this section, we outline the research gap in prior
studies and briefly highlight DEA and its extension, NDEA, as an appropriate method for assessing
the efficiency of petrochemical supply chains.

Petrochemical companies and supply chains rely on the steady flow of materials, whereas
manufacturing companies are primarily engaged in discrete production processes (Louw &
Pienaar, 2011). Petrochemical supply chains add value to materials by mixing, separating, forming,
or purifying them through chemical reactions (Lima et al., 2016). Because of its steady modes of
production, size, and complexity, as well as its economic and social relevance, the petroleum sector
involves a highly complex supply chain (Lababidi et al., 2004). Due to its complexity, recently,
there has been growing attention among scholars and policymakers to focus on efficient supply
chain operations and green technologies in petrochemical supply chains (see also studies on carbon
emission costs in supply chain contracts: (Zegordi & Shahidi, 2023); and green routing networks
in food logistics: (Pashang et al., 2025) to maximize environmental efficiency and reduce costs
(Sayardoost Tabrizi et al., 2024; Z. Wang & Fan, 2025).

The supply chain of the petroleum industry is very complex compared to other industries. It is
divided into two different, yet closely related, major segments: the upstream and downstream
supply chains. The upstream supply chain involves the acquisition of crude oil, which is the
specialty of the oil companies. The upstream process includes the exploration, forecasting,
production, and logistics management of delivering crude oil from remotely located oil wells to
refineries. The downstream supply chain starts at the refinery, where the crude oil is manufactured
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into the consumable products that are the specialty of refineries and petrochemical companies. The
downstream supply chain involves the process of forecasting, production, and logistics
management of delivering crude oil derivatives to customers around the globe. Challenges and
opportunities exist now in upstream and downstream supply chains (Abbood, 2025; Hussain et al.,
2006).

While there have been several studies on performance evaluation and efficiency assessment of
the petrochemical industry, these studies are limited in scope and number. This research focuses
on the efficiency assessment of petrochemical supply chains using data envelopment analysis.
Recent advancements also highlight the integration of machine learning and multi-stage network
DEA better to address uncertainties and dynamic conditions in petrochemical operations (Yakideh
& Moradi, 2023). In addition, recent contributions have explored the role of blockchain adoption
in supporting green supply chains (Sadeghi et al., 2023), providing insights into how technological
innovation can complement DEA-based evaluations. The following sections summarize data
envelopment analysis before delving into its application to the petrochemical supply chain. Table
1 summarizes previous studies utilizing the DEA technique in petrochemical supply chains.

Table 1. A summary of DEA models applied to the petrochemical industry
Type Of

undesirable

No. Title Reference DEA output Case Study
Sustainability-oriented modelling v Petrochemical
1 of petrochemical logistics processes (Abbood, 2025) NDEA logistics
Green DEA-based sustainability International
2 evaluation for international (. nggg‘ Fan, Green DEA v petrochemlc_:al
petrochemical supply chains supply chain
Clustering with machine learning
and using NDEA in development (Sayardoost .

3 planning: A case study in the Tabrizi et al., NDEA 4 Psiroﬁhirl?;?ﬁl
petrochemical two-stage 2024) PRly
sustainable supply chain

Assessing the sustainability of . .
4 supply chain performance using I\/I(Z){rzlfjlidezhotzg?s) NDEA-ML 4 Ps(ﬁm?hirl?;?sl
machine learning and network DEA ’ PRIy
A new Fuzzy DEA model for green
5 supplier evaluation considering (H. V\égg%)et al., FDEA v Simulated data
undesirable outputs
Developing a Double Frontier
Version of the Dynamic Network (Samavati et al., Bumpers

6 . : DNDEA x -

DEA Model: Assessing 2020) supply chain
Sustainability of Supply Chains
A novel network DEA-R model for : :

7 evaluating hospital services supply (Gerg(r;;logt al., NDEA x suHO?plé?]I;in

chain performance PRly
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A supplier performance evaluation
framework using single and bi-

8 | objective DEA efficiency modeling G(S;)dsvzar;(l);%) DEA v SteiLsaliJrE’ply
approach: individual and cross- ge.
efficiency perspective
Measuring and improving adaptive
capacity in resilient systems using an Salehi et al., DEA-MLP :
9 igtegr)allted DEA-Ma)(/:hine Iearni?'lg ( 2020) * Simulated data
approach
An integrated weighting and ranking
model based on entropy, DEA, and :
10 PCA, considering two aggregation (Davoudabadi et DEA x Simulated data
o~ - al., 2020)
approaches for the resilient supplier
selection problem
Green Supplier Selection Based on DEA in
11 DEA Model in Interval-Valued (Wu et al., 2019) I\/PEE x Simulated data
Pythagorean Fuzzy Environment
Evaluating green suppliers: (Dobos &
12 Improving supplier performance Vérosmarty, 2019) DEA x Simulated data
with DEA in incomplete data. Y
Performance Management of Supply
Chain Sustainability in Small
13 aﬂgi%eg 'gg]msb'izni% EST:EL?LLS;S (Dey et al., 2019) DEA x Simulated data
Equation Modelling and Data
Envelopment Analysis
A new DEA model for evaluation of Non-radial
supply chains: A case of selection (Krmac & .
14 and assessment of environmental Djordjevi¢, 2019) DEA Y Simulated data
efficiency of suppliers
Assessing the sustainability of
15 supply chains by a chance- (Izadikhah & Saen, NDEA v Pasta supply
constrained two-stage DEA model in 2018) chain
the presence of undesirable factors
Supply chains' performance with (Jahani Sayyad .
16 undesirable factors and reverse Noveiri et al., Radial DEA x Texf:lllqzisnuspply
flows: A DEA-based approach. 2018)
Green Efficiency Analysis of
17 Longan Supply Chains: A Two- (Panrr;%nlese etal, NDEA x SteeIhSL_JppIy
Stage DEA Approach ) chain
Performance Evaluation in Green based
18 | Supply Chain using BSC, DEA, and (Khalili & DEA-base x Simulated data
o~ . MPI
Data Mining Alinezhad, 2018)
Supplier selection study under the
19 respect of the low-carbon supply (He & Zhang, DEA < Steel supply
chain: A hybrid evaluation model 2018) chain
based on FA-DEA-AHP
Sustainability evaluation of the
supply chain with undesired outputs Tea supply
20 and dual-role factors based on (Su & Sun, 2018) NDEA Y chain

double frontier network DEA

Note: Type of DEA Column: FDEA: Fuzzy DEA, DNDEA: Dynamic Network DEA, NDEA: Network DEA,
MPI: Malmquist Productivity Index, MLP: Multilayer perceptron, IVPFE: Interval-Valued Pythagorean Fuzzy

Environment.
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The main weaknesses of the studies listed in Table 1 are summarized as follows:

®,

% First: Table 1 shows that all the papers assume the inputs and outputs are deterministic.
However, in the real world, there might be incomplete data.

% Second: All the DEA models are radial (i.e., CCR and BCC). The radial DEA models
assume the proportional changes of inputs, outputs, and intermediate measures.

% Third: literature treats a DMU as a closed system in which all the outputs enter the next

stage as inputs. However, in many cases, outputs might leave the system at one of the stages

without entering the next stage. On the other hand, external inputs might enter the network

in one of the stages.

Most of the earlier works exploited complete data, and incomplete data (Incompleteness in
data can refer to noise in either the input (Shrestha et al., 2019; Tiwari & Naskar, 2017) or in the
labels(Nigam et al., 2000; Tsuboi et al., 2008). Also, previous studies mainly employed quantitative
criteria, and qualitative criteria have been used less frequently. Therefore, the present study
represents one of the first comprehensive applications of NDEA to the performance evaluation of
the petrochemical supply chain.

Materials and Methods

The present study is applied research in terms of objectives and descriptive-analytical in terms of
data collection. It is mathematical in nature and cross-sectional. This work seeks to evaluate the
performance of the petrochemical green supply chain. The statistical population consisted of
Iranian petrochemical companies in green production. The study population was Iranian
petrochemical companies active in green output, from which 10 leading companies active in green
products were selected based on the researcher's familiarity, the availability of information, and
admission to the Tehran Stock Exchange. Due to the companies’ data confidentiality, their names
have not been mentioned. A total of 10 famous green production companies were selected based
on the author’s knowledge. Also, nine experts were invited to participate in the study. Table 4
describes the expert panel.

Table 4. Profile of research experts

No. Position Level of Education Experience (year) Age (year)
1 Managing Director BSc 15 37
2 Managing Director BSc 20 43
3 Managing Director Ph.D. 12 48
4 Managing Director BSc 25 52
5 Managing Director MSc 17 46
6 Managing Director MSc 30 65
7 Managing Director MSc 19 52
8 Managing Director MSc 20 56
9 Production manager Ph.D. 7 30
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Energy resources in Iran are the third largest oil reserves and the second largest natural gas
reserves in the world (Kazemi et al., 2013). Figure 2 depicts the geographical distribution of the

selected companies.
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Fig. 2. Geographical distribution of the DMUs
According to the above, this study was conducted in the following steps:

e Performance measurement criteria (input and output variables) were extracted from the
literature.

e The extracted criteria were screened using the FDM based on expert opinion to identify
measurable criteria in the petrochemical industry.

e Data were collected, and the performance of the green supply chain was evaluated and
quantified through the efficiency score.
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Data Collection Protocol

Data were collected from ten leading petrochemical companies in Iran through a structured
protocol. The firms were selected from the list of petrochemical companies admitted to the Tehran
Stock Exchange, with the inclusion criteria being: (i) availability of annual financial and
sustainability reports for 2018-2022, (ii) sufficient disclosure of environmental and operational
data, and (iii) engagement in green production practices. Companies not meeting these criteria were
excluded. Due to confidentiality agreements, the actual company names cannot be disclosed;
instead, each company was anonymized and randomly labeled DMU1-DMU10. Quantitative
indicators such as energy consumption, environmental costs, and production volumes were
obtained from company annual reports, Tehran Stock Exchange disclosures, and sustainability
reports covering 2018-2022. Qualitative indicators such as “Supplier Flexibility” and “Customer
Satisfaction” were assessed using structured questionnaires rated on a 1-5 Likert scale and
validated by the expert panel. Expert judgments were transformed into fuzzy numbers to capture
uncertainty. Including objective company data and subjective expert evaluations ensured that all
17 input/output variables were measured transparently and consistently, enhancing the study's
replicability.

Fuzzy Delphi Procedure

The Fuzzy Delphi Method (FDM) was employed to validate and finalize the 17 input/output
variables used in the study. Nine experts with backgrounds in supply chain management,
petrochemical operations, and environmental management participated in a two-round Delphi
process. Each expert evaluated the candidate variables using triangular fuzzy numbers (L, M, and
U). The fuzzy responses were aggregated and defuzzified using the formula (L + M + U)/3. A
threshold of 0.66 was applied, meaning that variables with defuzzified scores above this value were
retained. To measure inter-expert agreement, Kendall’s W coefficient was computed and yielded a
value of 0.81, indicating strong consensus among experts. After the second round, the procedure
converged, selecting 17 final variables (see Appendix B).

NDEA Model Specification

The proposed multi-stage network DEA model was implemented in three configurations:
optimistic, pessimistic, and overall evaluation. The models were solved using Lingo 19.0
optimization software, which supports linear and non-linear programming.

The analysis was conducted under a variable return to scale (VRS) assumption to account for
scale heterogeneity across the firms. An input-oriented approach was adopted, as the primary
managerial interest was identifying potential input reductions while maintaining the same output
levels.
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Undesired outputs (e.g., CO2 emissions, environmental waste, and dissatisfied customers) were
incorporated into the model by treating them as inputs (i.e., to be minimized). This ensures that
higher values of undesirable factors reduce efficiency, consistent with the logic of DEA. Dual-role
variables, such as energy consumption efficiency, were modeled according to their functional role
in each stage—serving as an output in one stage and an input to the next.

A non-Archimedean infinitesimal constant (€ = 107°) was used to ensure the feasibility of the
linear programming models without affecting efficiency scores. Sensitivity tests with alternative €
values (10~ to 10®) confirmed that results were stable.

The implementation steps involved:

1. Defining the three sub-stages (suppliers, manufacturers, distributors) and their respective
inputs, desirable outputs, and undesirable outputs.

2. Running separate DEA models under optimistic and pessimistic assumptions.
3. Aggregating stage efficiencies to obtain overall network efficiency scores.

This specification ensured consistency across DMUs and robustness of results.

In Table 5, the mathematical description of parameters, variables, and indices of the NDEA-
designed model is provided.

Table 5. Designed three-stage NDEA symbols

Description of symptoms Symptoms
The rth components of the desired output vector for DMU; flowing from stage p, j1P ~1 R
and would not be passed to stage p+1 Zpr 0 T L Mp
The rth components of the undesired output vector for DMUj flowing from stage j1UD -1 R
p, and would not be passed to stage p+1 Zpr 0 T =Ll
The kth components of the output vector for DMUj flowing from stage p, and j2 _
z, , k= 1,..,K,
would be passed to stage p+1 p
The ith components of the input vector for DMUj flowing at the stage p zﬁ =100
The tth components of the dual-role factor vector for DMUj flowing at the stage y A -1 T
p pt ) LA ) p
The weight for the desired output component z;iDat the stage p Upr
The weight for the undesired output component z;iUD at the stage p Hpr
The weight for the output component Z;i at the stage p Npk
The weight for the input component z{,f’ entering the process at the beginning of -
the stage p i
The weight for the dual-role factor ygf when it is treated on the output side Yot

The weight for the dual-role factor when it is treated on the y;f input side Byt




Green Efficiency of an Energy Supply Chain...| Azzavi, et al. 11

Therefore, for p > 2, the efficiency ratio is calculated as:
R '1UD K i2 T i4 T i4
X2y UprZyy  + X p177pk Zz]Jk + X0 VoeYpe — X p1ﬁpt3’ét

K UD
p-1 ]1
2y Mp- 1kzp 1k+2r 1HorZpy Tt Z Uplz

Op = (1)

1UD .
Where Z uprzior denotes the sum of the desired outputs of DMU; in stage p, Z:f 1 Npk zi)zk

is the sum of the outputs of DMU; from stage p to stage p+1, ZT”lyptyIff - ZT”I ﬁptypt are the

outputs of the dual-role factors of DMU; in stage p, and Zk 1 Mp-— 1kzp Tha Zr 1uprz +

. ]3
i=1 UpiZyi

efficiency ratio is obtained as:

is the sum of the undesired inputs and outputs of DMU; In stage p. For p=1, the

R 1V T j4
Zrlluer{r + Zk 1n1k Zlk + Zt 1Y1ty1t - 2t1=1B1tYi’t

Ry jiub
Zr 1.“17‘211« + Z vllZ

0, = (2)

U .
Where YR u,,z)' " denotes the sum of the desired inputs of DMU;, YKL M1k zis is the sum

of the outputs of DMU; from stage 1 to stage p, Zt 171t3’1c ZTi ,Bltyj4 is the sum of the

outputs of the dual-role factors of DMU;, and Zr 1;1”2{3 + Zl 1U11211 is the sum of the

undesired inputs and outputs of DMU; in stage p.

Then, the overall performance can be represented by a linear combination of the above-
mentioned efficiency scores as:

P P
Z w, 6, where Z w, =1 3)
p=1 p=1

Where w,, is the consumption rate in stage p for the entire inputs and can be described as
follows:

1 K Rp P
p-1 UuD .
Wp = TC Z Np- 1kZp 1k+2#przjl +vaiz£ ,p=1,..,P (4)
= i=1
Ip
j1vP j3
“17 TC Z HprZpr ¥+ vaizpi 5)
i=

Where TC refers to the total consumption of the process and is given by:
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TC = Zp ZZKP 1r;p 1kzp 1t Z (Zuprz +valz (6)

Therefore, the overall performance is rewritten as:

o 1(ZT L Upr ér + Ek 1 Mpke zpk + Zt 1yptypt — X Boeyot @)

K. L 3
p=22kp1177p 1kZp 1k T Z 1(Zr 1 HprZ pr U+ ) UPiZ;JJi)

The Optimistic Efficiency (OE) score should be calculated in the next step. According to
(Cook et al., 2010), the OE score of DMU,, in an NDEA model can never exceed 1 by optimizing
overall performance 6 and constraining individual measures 6,,. Then, by altering the Charnes-
Cooper model, the OE score of DMU,, can be written as:

P

Tp
§ § fp 01UD E Ko 02 E 04
Max ¢, = ( . UprZpr T fe1 Npk Zpk t (th_ﬁpt)th)
r= =
t=1

p=1

I
14
Kp-1 01UD 03 | _
77p Lk Zptap + HprZpr  + ) UpiZpi | =1
p=2 p=1 r=1 i=1
Ky
j1P 02
(Z UyrZi, + z N1k Z1j
r=1 k=1

I
Dy (8)
+ Z(ht Bie)yie) — (Z H1r 20} ot zvlizfig) <0

Rp Kp-1
(Z 1uprzzgr + Z Upk Zpk, + Z(th Bpt)J’pt) - (z Np— 1kZp 1k
r=
+Zuprzf,’} + vaz ) <0
=1

upr:.upr'npkivpiryptrﬁpt =&, p—l P

The DMU is efficient if its efficiency score is 1; otherwise, it is inefficient
(efficiency score < 1). (Y.-M. Wang et al., 2007) developed the double-frontier DEA model
and calculated two efficiency scores (Y.-M. Wang & Chin, 2009; Xu et al., 2017), including (1) an
OE score, which is known as the efficiency frontier, and (2) a PE score, which is referred to as the
inefficiency frontier. According to (Y.-M. Wang et al., 2007), the PE score of DMU, can be
calculated to be below one by minimizing overall performance 0 and constraining individual
measures 0,,. By altering the Charnes-Cooper model, the PE score of DMU, can be derived as:
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P Tp
] Rp Kp 5 .
Min ¢, = Z(Z T Zk_lnpk 208+ ) Ope—Bpe)Ved)
- t=1

Ip
Kp-1 01V 03
Up Lk Zptyg + ﬂprZ "+ UpiZp; | =1
p=2 p=t i=1
K
10 !
(Z uer{r + Zk 17’1k Zfl%
r=1
D1 uD S 03 ©)
+ Z(m Byt = Q. wzi + Zvuzu) >0
i=
R Kp—l 5
D gt + Z Tz Z(ypt Bpvst) = Q" s
+z;1prz +2vplz ) =0

Upr » Hpr » Npk » Uplryptrﬁpt =€, p_ 1,

The DMU is pessimistically inefficient if the efficiency score is 1. Also, if the efficiency score
of the DMU is greater than 1, the DMU is non-pessimistically inefficient.

Finally, the Overall performance can be calculated. Optimistic and pessimistic efficiencies are
used to rank DMUs from different perspectives. To assign an overall rank to a DMU, it is required
to use an overall performance criterion. According to (Y.-M. Wang et al., 2007), an overall
performance criterion could be obtained by the geometric mean of optimistic and pessimistic
efficiencies. That is, drawing on optimistic and PE scores, an overall DMU performance criterion
can be calculated as:

le 0 \/zl 07

Where @ is the OE score of DMU; (Eq. (8)), while ¢ is the PE score of DMU; (Eq. (9)). Here,
j refers to the total number of DMUS.

G=1,...]) (10)

Limitations

Despite the robustness of the proposed methodology, some limitations must be acknowledged.
First, the selection of 10 companies was based on convenience and data availability, which may
introduce selection bias and limit generalizability. The relatively small sample size (N=10) further
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restricts the generalization of the findings. However, given the confidentiality of company-level
data and limited disclosure of environmental reports, expanding the sample was not feasible within
the scope of this study. Second, the study relies partly on self-reported company data, which may
be subject to reporting bias. Third, while the Fuzzy Delphi Method reduced subjectivity in expert
judgments, the perspectives of only nine experts were incorporated, which may not fully capture
the diversity of stakeholder opinions. Lastly, the NDEA framework used in this study is static and
does not account for temporal dynamics in efficiency performance. Future studies should expand
the sample size, include longitudinal data, and apply dynamic or hybrid DEA models to provide
broader insights.

Results

The performance evaluation of petrochemical supply chains involves many complex qualitative
and quantitative criteria. Table 3 lists several performance criteria commonly used in the literature
to evaluate the performance of petrochemical supply chains. The input and output criteria before
Fuzzy Delphi and expert screening are reported in Table 3.

Table 3. Petrochemical supply chain performance evaluation criteria extracted from the literature

Criterion Type

Input | Output

1 Advertising cost v (Su & Sun, 2018)

(1zadikhah & Saen, 2018; Khalili & Alinezhad, 2018;
Nguyen, 2020)

(Bajec & Tuljak-Suban, 2019; Dey et al., 2019;
Goswami & Ghadge, 2020; Jahani Sayyad Noveiri et
al., 2018; Krmac & Djordjevi¢, 2019; S. Li, 2018; Y.
Li et al., 2019; Ming & Feng, 2019; Mozaffari et al.,
2020; Pouralizadeh et al., 2020; Tavassoli, Ketabi, et

al., 2020; H. Wang et al., 2020)
(Ang et al., 2019; Bafrooei et al., 2014; Izadikhah &
Saen, 2018; Samavati et al., 2020; Wu et al., 2019)
(Dey et al., 2019; Samavati et al., 2020; Wu et al.,

References

Number Criteria

2 Operational cost v

3 Number of employees 4

4 Environmental cost v

Cost of work safety and

v
> labor health 2019; Zarbakhshnia & Jaghdani, 2018)
6 Offered pl‘.l ce from 4 (Y. Lietal., 2019; Tavassoli, Saen, et al., 2020)
suppliers
7 Transportation cost 4 (Su & Sun, 2018; Tavassoli, Saen, et al., 2020)
8 Annual turnover 4 (Ang et al., 2019)
9 Cost of part|IC|pat|on in v (Ang et al., 2019)
green production programs
10 CSR practices v (Dey et al., 2019)
1 Material purchase cost (Izadikhah & Saen, 2018; Kalantary et al., 2018; S.

Li, 2018; Samavati et al., 2020; Su & Sun, 2018)
12 Cost of quality v (Pitchipoo et al., 2018; Su & Sun, 2018)
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Quality management

13 v (He & Zhang, 2018)
system
14 Staff welfare cost v (Su & Sun, 2018)
15 Greenmarket share v (Davoudabadi et al., 2020)
Diouf & Kwak, 2018; Dobos & Voérésmarty, 2019;
/ ( ) i) ) il
16 Cost of products Karami et al., 2020; C. Wang et al., 2018)
17 Environmental standard |, (Davoudabadi et al., 2020)
certification
(Bajec & Tuljak-Suban, 2019; Chen et al., 2017,
Dobos & Vorésmarty, 2019; Goswami & Ghadge,
- 2020; He & Zhang, 2018; Krmac & Djordjevié,
v
18 CO: emission 2019; Lin et al., 2019; Pouralizadeh et al., 2020;
Samavati et al., 2020; Su & Sun, 2018; H. Wang et
al., 2020; Zarbakhshnia & Jaghdani, 2018)
19 Export rate 4 (Tavassoli, Ketabi, et al., 2020)
20 Number of customers 4 (Pouralizadeh et al., 2020)
21 Wastewater system (Dey et al., 2019)
efficiency
(Ang et al., 2019; Khalili & Alinezhad, 2018;
v
22| Number of green products Samavati et al., 2020; Su & Sun, 2018)
23 Customer satisfaction 4 (Ming & Feng, 2019)
24 Profit to sales ratio v (Hossein Ranjbar et al., 2013; Ming & Feng, 2019)
25 Effectlveness of the v (Dey et al,, 2019)
environmental system
26 Energy efficiency 4 (Tavassoli, Saen, et al., 2020)
27 Net profit 4 (S. Li, 2018)
28 Number of dissatisfied v (Jahani Sayyad Noveiri et al., 2018)
customers
29 Revenue from green v (Khalili & Alinezhad, 2018)
products
30 Internal audit scores 4 (Khalili & Alinezhad, 2018)
31 Use of renewable resources 4 (Khalili & Alinezhad, 2018)
32 Total asset return rate 4 (He & Zhang, 2018)
33 Cost of environmental v (Dey et al., 2019)
waste
34 Supplier flexibility 4 (Su & Sun, 2018)

The initial criteria were screened and localized using the FDM. A total of 34 criteria were
employed to measure green supply chain performance. As mentioned, these criteria had been
extracted through a literature review (Table 2). Then, these criteria were measured using the FDM
to be localized to the petrochemical industry, as shown in Table 5.
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Table 5. FDM results

. Fuzzy value Defuzzied -
No. Criteria L yM U value Decision
C1 Number of Employees 0.25 0.84 1 0.697 v
C2 Environmental cost 0.25 0.75 1 0.668 v
c3 Cost of WorrI:es;:Ety and labor 0.25 0.81 1 0.688 v
C4 Cost of products 0 0.67 1 0.559 x
C5 Operating costs 0.25 0.72 1 0.657 x
C6 Material purchase cost 0.25 0.75 1 0.668 v
C7 Cost of quality 0.25 0.70 1 0.653 x
C8 Offered price from suppliers 0.25 0.72 1 0.657 x
C9 Transportation cost 0.5 0.93 1 0.813 v
C10 Supplier flexibility 0.25 0.74 1 0.665 v
Cl11 Advertising cost 0.25 0.81 1 0.688 v
Ci12 Staff welfare cost 0.25 0.80 1 0.685 v
C13 Effluent system efficiency 0.5 0.90 1 0.803 v
Cl4 Cost of parti_cipation in green 0.25 0.81 1 0.688 v

production programs
C15 Number of customers 0 0.69 1 0.566 x
C16 CSR practices 0.25 0.66 1 0.639 x
C17 Quality management system 0.25 0.81 1 0.688 v
C18 Green market share 0 0.70 1 0.569 x
C19 CO, emission 0.25 0.78 1 0.680 v
C20 Net profit 0.25 0.69 1 0.649 x
C21 Number of green products 0.25 0.84 1 0.697 v
C22 Profit to sales ratio 0.25 0.67 1 0.642 x
C23 Energy efficiency 0.25 0.84 1 0.697 v
c24 Environmental standard 0.25 081 1 0.688 v
certification
C25 Annual turnover 0.25 0.73 1 0.660 x
C26 Customer satisfaction 0.5 0.79 1 0.767 v
Co7 Effectiveness of the environmental 0.95 0.68 1 0.645 <
system

C28 Internal audit status 0 0.57 1 0.527 x
C29 Export rate 0.25 0.69 1 0.649 x
C30 | Number of dissatisfied customers 0.25 0.70 1 0.653 x
C31 Revenue from green products 0.25 0.72 1 0.657 x
C32 Cost of environmental waste 0.25 0.75 1 0.668 v
C33 Use of renewable resources 0.25 0.62 1 0.625 x
C34 Total asset return rate 0.25 0.64 1 0.549 x

As shown in Table 5, the experts verified 17 of the 34 supply chain performance criteria used
as input and output of the green supply chain research. There is a supplier—manufacturer—distributor
green supply chain for each petrochemical company, which is shown in Figure 3.
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Cost of quality
Environmental standard certification

v

Cost of purchasing materials
Cost of staff health and safety
Cost of participation in green production
programs
Environmental cost
Staff welfare cost
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quality management system
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Supplier flexibility

Producer

Transportation cost
Advertising cost

Number of green products
Energy efficiency
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Cost of environmental waste (undesirable
output)

Distributor

i

Customer satisfaction

Fig. 3. NDEA structure based on supplier—manufacturer—distributor of DMUs

This section describes the NDEA results. Table 6 represents summarized definitions of the
criteria. Tables 7-9 report the efficiency measurement data of the ten petrochemical companies.

Table 6. Summarized definitions of the criteria

Stage Indices Definitions Unit
zlji’ Environmental standard certification Number
Supplier z)3 CO;, emission Million rials
lel1D Supplier flexibility 1-5 (qualitative)
zﬁ’ Cost of purchasing raw materials Million rials
zﬁ’ Cost of staff health and safety Million rials
3 Cost of participation in green production Million rials
23 programs
z)3 Environmental cost Million rials
zég’ Staff welfare cost Million rials
j3
z Number of Employees People
Producer 2 -
Zyy quality management system Number
ZZJ';D Number of green products Number
szle Energy efficiency Percentage
j1P Efficiency of the wastewater treatment Percentage
%23 system 9
j1UD Cost of environmental waste (undesirable Million rials
24 output) ron i
zﬁ' Transportation cost Million rials
Distributor 233 Advertising cost Million rials
ZB{;D Customer satisfaction Percentage
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Table 7. Input and output data of the suppliers

Supplier
DMU Inputs Outputs
2} s L
DMU; 1 3024 3
DMU, 2 1534567 4
DMU3 1 358522 5
DMU, 2 10153 5
DMUs 2 280934 5
DMUs 1 230579 3
DMU, 2 512135 3
DMUg 1 15240 4
DMUqy 2 14240 3
DMUyo 1 23259 4
Table 8. Input and output data of the distributors
Distributor
DMU Inputs Outputs
2] 2, ol
DMU; 66282 32756 0.79
DMU; 9898969 51500 0.83
DMU3z 1159898 5947 0.77
DMU4 6802422 227157 0.87
DMUs 6707144 153718 0.95
DMUs 4487285 4664 0.89
DMUy 12999264 144594 0.88
DMUg 415256 55431 0.92
DMUgq 304006 68287 0.82
DMUyo 8042261 7641 0.89
Table 9. Input and output data of the manufacturers
Producer
DMU Inputs Outputs
2 2, | 7 o 2 | de |25 | A | A A | A
DMU, 6992162 9106 1540 | 259132 33213 615 | 3 1 0.74 | 0.88 1297
DMU, | 113665000 | 901794 | 697 | 2229000 | 5130939 | 6799 | 4 2 0.86 | 0.84 | 1274533
DMU; | 20157331 | 13805 322 743016 14617 | 1942 | 3 2 0.656 | 0.83 28538
DMU, | 20198892 | 244695 | 1234 | 353577 | 248793 | 709 | 3 2 086 | 0.9 3814
DMUs | 90544253 | 10719 | 23205 | 155085 | 3485157 | 2460 | 2 0 091 | 092 | 1211602
DMUs | 93269056 | 14539 | 1162 | 136735 | 602259 | 2459 | 2 1 0.82 | 0.87 | 357044
DMU; | 85240055 | 13441 | 6761 | 483036 | 500970 | 781 | 1 0 0.86 | 0.76 | 152574
DMUs | 59367664 3519 2457 | 617571 | 747264 | 3229 | 2 1 091 | 0.86 | 106754
DMUq 4152852 41919 58 221615 | 270927 | 1191 | 1 1 0.83 | 0.92 | 712109
DMUyo | 13672872 | 23259 | 1697 83233 189023 | 1160 | 2 1 0.74 | 0.74 | 415604
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As mentioned, the present study sought to evaluate the efficiency of ten petrochemical
companies through an NDEA model to identify and rank efficient companies and make
improvement suggestions. The optimistic efficiencies of the petrochemical companies were
calculated using Eq. (8), as reported in Table 10, where the last column represents the arithmetic
mean of the efficiency for each DMU.

Table 10. OE Scores of DMUs

OE

DMU Supplier Producer Distributor Overall OF
DMUy 1 1 1 1

DMU> 0.4 0.61 0.125 0.378
DMU3 1 1 1 1

DMU4 0.78 1 0.097 0.625
DMUs 0.57 1 0.13 0.566
DMUs 0.64 1 1 0.88
DMU~ 0.31 1 0.08 0.463
DMUs 1 1 0.61 0.87
DMUg 0.44 1 0.47 0.636
DMU1o 0.99 1 0.61 0.866

A DMU is assumed to be efficient if its efficiency is 1; efficiency scores below 1 represent
inefficient DMUs. According to Table 10, DMU3 and DMUL1 were efficient in the optimistic
scenario, while the remaining companies were concluded to be inefficient. The efficiency of DMU3
and DMUL1 is mainly explained by their investments in cleaner technologies, adoption of robust
quality management systems, and better utilization of human resources. In contrast, the inefficiency
of other DMUs can be attributed to high environmental costs, excessive staff welfare expenses, and
unbalanced workforce structures. Figure 4 illustrates the OE scores of the DMUs for suppliers,
manufacturers, and distributors.
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Fig. 4. OE scores of suppliers, manufacturers, and distributors

The PE of the petrochemical companies was calculated by Eq. (9). Table 11 provides the PE
results of the ten petrochemical companies' suppliers, manufacturers, and distributors. It should be
noted that the last column stands for the arithmetic mean efficiency of the DMUs.

Table 11. PE scores of DMUs

PE
DMU Supplier Producer Distributor Overall PE
DMU; 2 1 6.29 3.096
DMU; 1 1 1.23 1.076
DMU3 3.12 1.017 9.8 4.645
DMU4 1.66 1.3 1 1.32
DMUs 1.66 1 1.42 1.36
DMUs 2 1.02 2.94 1.986
DMUy 1 1 1 1
DMUs 2.66 141 4.33 2.8
DMUg 1 1.64 3.13 1.923
DMU1o 2.66 1.34 1.63 1.876

A DMU is considered to be inefficient if its PE score is 1. The DMU with a PE score greater
than one is assumed to be non-pessimistically inefficient. According to Table 11, DMU7 was found
to be pessimistically inefficient, whereas the remaining companies were non-pessimistically
inefficient. The inefficiency of DMU7 reflects weaknesses in managing transportation and
advertising costs and lower customer satisfaction. Conversely, efficient DMUs such as DMU3 and
DMU8 achieved better results by optimizing distribution networks and implementing higher safety
and environmental standards. Figure 5 depicts the PE of the companies’ suppliers, manufacturers,
and distributors.
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Fig. 5. PE scores of suppliers, manufacturers, and distributors

Overall performance was obtained using Eq. (10). Table 12 reports the companies’
manufacturers, suppliers, and distributors' overall performance scores (the arithmetic mean). As
can be seen, the distributor of DMU3 had the highest performance, while the distributor of DMU7
had the lowest performance. Also, the manufacturers of DMU9 and DMU2 were found to have the
highest and lowest performance scores, respectively. The supplier of DMU3 had the highest
performance, whereas DMU7 was found to have the lowest performance. Moreover, DMU3 and
DMU2 were calculated to have the highest and lowest overall performances. The superior
performance of DMU3 is linked to its more integrated supply chain and compliance with
environmental standards, while the poor performance of DMUZ2 is mainly due to excessive labor-
related costs and insufficient investment in green technologies. Figure 6 shows the overall
performance results of the companies' suppliers, manufacturers, and distributors.

Table 12. Overall performance scores

DMU Supplier Producer Distributor Overall efficiency
DMU; 0.730 0.591 0.966 0.763
DMU; 0.323 0.464 0.154 0.314
DMUs; 0.907 0.596 1.227 0.910
DMU,4 0.585 0.671 0.122 0.459
DMUs 0.498 0.591 0.170 0.420
DMUs 0.581 0.596 0.717 0.631
DMUy 0.286 0.591 0.114 0.330
DMUs 0.834 0.700 0.626 0.720
DMUq 0.340 0.761 0.467 0.523
DMUyo 0.830 0.681 0.425 0.645
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Fig. 6. Overall performance of the suppliers, manufacturers, and distributors

Table 13 and Figure 7 rank the companies based on OE, PE, and overall performance. As can
be seen, DMU3 was observed to be the most efficient company, whereas DMU2 was found to be
the most inefficient one among the ten DMUSs. Slack analysis further indicates that DMU2 should
reduce staff welfare costs and advertising expenses to increase efficiency while benchmarking best
practices from DMUS3. Other inefficient DMUs (e.g., DMU4, DMUS5, and DMU7) can enhance
their performance by optimizing environmental costs and improving energy efficiency.

Robustness Analysis

To further confirm the robustness of these findings, we conducted additional sensitivity checks (see
Appendix C). The results show that efficiency rankings remain generally stable under moderate
adjustments of key inputs and outputs, which supports the credibility of the managerial
recommendations presented in this study. As further confirmed by the bootstrap analysis
(Appendix D), the observed efficiency patterns are statistically robust, with efficient units such as
DMU1 and DMU3 maintaining stability across replications and inefficient units like DMU2
consistently underperforming.
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Table 13. Ranks of the petrochemical companies

DMU OE PE Overall efficiency Rank
DMU: 1 3.096 0.763 2
DMU:; 0.378 1.076 0.314 10
DMUs 1 4.645 0.910 1
DMU4 0.625 1.32 0.459 7
DMUs 0.566 1.36 0.420 8
DMUs 0.88 1.986 0.631 5
DMU~ 0.463 1 0.330 9
DMUs 0.87 2.8 0.720 3
DMUs 0.636 1.923 0.523 6
DMU10 0.866 1.876 0.645 4

4.5

3.5

2.5
1.
0. l I l

DMU1 DMU2 DMU3 DMU4 DMUS DMU6  DMU7 DMU8 DMU9 DMUI10

w

N

()]

-

()]

o

OE mPE = Overall efficiency

Fig. 7. NDEA results of DMUs

As defined in DEA models, a DMU is considered DEA-efficient or “optimistic efficient” if its
best relative efficiency equals one; otherwise, it is categorized as DEA-non-efficient or optimistic
non-efficient. Performance can also be evaluated from a pessimistic perspective. In this case, the
efficiency assessed is referred to as the worst relative efficiency (pessimistic efficiency), and its
value is restricted to quantities greater than or equal to one. A DMU is considered DEA-inefficient
or pessimistically inefficient if the value of its worst relative efficiency equals one; otherwise, it is
classified as DEA-non-inefficient or pessimistically non-inefficient. Optimistic and pessimistic
efficiencies must be assessed concurrently to evaluate each DMU’s performance comprehensively.
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Accordingly, our NDEA model simultaneously measures the efficiency of the petrochemical
supply chain in terms of OE, PE, and overall efficiency.

Before introducing Figure 8, it is important to explain how the axes and quadrants should be
interpreted. In each matrix, the horizontal axis represents the efficiency score of the first dimension
being compared (e.g., OE). In contrast, the vertical axis corresponds to the second dimension (e.g.,
PE or overall efficiency). The upper-right quadrant identifies “star performers” with above-average
scores in both dimensions. The lower-left quadrant includes underperforming DMUs with below-
average results on both axes. The upper-left and lower-right quadrants reflect asymmetric
performance, where DMUs may perform excellently in one dimension but poorly in the other. This
explanatory framing provides readers with a clear mental map for interpreting the relative
positioning of DMUs before examining the charts.

Figure 8 compares Optimistic Efficiency (OE), Pessimistic Efficiency (PE), and overall
efficiency. The DMUs are grouped into four categories in each figure based on their average
efficiency scores. These comparisons distinguish efficient and inefficient DMUs and provide
practical insights for improvement. Specifically, DMUs with low scores across all dimensions
(such as DMU2 and DMU7) must focus simultaneously on reducing environmental and welfare
costs and enhancing quality management systems. Conversely, efficient DMUs (such as DMU3
and DMU1) should continue investing in technological innovation and customer satisfaction
initiatives to maintain their competitive advantage. The main findings are illustrated as follows:

% Figure 8a compares the average OE and the average PE. The horizontal axis is OE with an
average efficiency score of 0.7284. The vertical axis is PE with an average efficiency score
of 2.1082. The lower-right quadrant has two DMUs with high OE and low PE. DMUG6 and
DMU10 should focus on the PE to achieve better performance. This can be achieved by
providing increasing safety standards and increasing customer satisfaction. The DMUs with
low OE and PE are placed in the lower-left quadrant (DMU2, DMU4, DMU5, DMU7, and
DMU9). These DMUs should focus on increasing OE and PE concurrently. The DMUs
with high OE and PE are placed in the upper-right quadrant (DMU1, DMU3, and DMUS).

¢+ Figure 8b compares the average OE and overall efficiency of DMUs. The horizontal axis
displays OE with an average efficiency score of 0.7284. The vertical axis displays overall
efficiency with an average efficiency score of 0.5715. As is seen in Fig. 8b, the DMUSs’
positions are similar to those in Fig. 8a, as there is a high correlation between PE and overall
efficiency. The DMUs with low OE (DMU2, DMU,, DMUs, DMU~, and DMUg) can
improve their OE by improving the cost of environmental waste, CO2 emission, fuel, and
the cost of purchasing raw materials.
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%+ Figure 8c compares the average PE and the average overall efficiency. The horizontal axis
displays PE with an average efficiency score of 2.1082. The vertical axis displays overall
efficiency with an average efficiency score of 0.5715. As is seen, there is no DMU in the
lower-right quadrants. The lower-left quadrant has five DMUs (DMUz, DMUs, DMUs,
DMUy7, and DMUy). These DMUSs should increase their PE and overall efficiency. This can
be achieved by the optimal use of resources, reducing the cost of participation in green
production programs, environmental costs, and staff welfare costs. The best DMUs are
placed in the upper-right quadrant (DMUs, DMU3, and DMUs). The DMUs with low PE
(DMUsg, DMU710) can improve their efficiency by reducing environmental costs, staff
welfare costs, employee numbers, and quality management systems.
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Discussion

Our results suggest that DMU3 and DMU1 were efficient in the optimistic scenario, while the
remaining companies were inefficient. This finding is directly supported by Table 10, where both
DMUs reached an OE score of 1, showing their ability to optimize resources across suppliers,
manufacturers, and distributors. In contrast, DMU2 obtained the lowest OE score (0.378),
highlighting its structural inefficiencies. The efficiency of DMU3 and DMUL1 can be attributed to
their balanced allocation of resources across suppliers, manufacturers, and distributors, combined
with lower environmental costs and higher customer satisfaction compared to other DMUs. The
DMU7 was determined to be inefficient under the pessimistic scenario, and the remaining
companies were inefficient non-pessimistically.

According to Table 11, DMU7’s PE score of 1 indicates pessimistic inefficiency, which is
linked to disproportionately high transportation and welfare costs (see Table 8) and weak
performance in quality management. The inefficiency of DMU7 can be attributed to its
disproportionately high transportation and welfare costs, combined with underperformance in
quality management and energy efficiency, which resulted in resource waste without yielding
proportional outputs. Regarding overall performance, the distributors of DMU3 and DMU7 had
the highest and lowest efficiencies, respectively. Specifically, DMU3’s distributor achieved an
overall efficiency score above 1.2 (Table 12), reflecting effective logistics and customer
engagement, while DMU7’s distributor recorded only 0.114, confirming its weak cost structure
and poor customer satisfaction. The superior distributor efficiency of DMU3 reflects effective
logistics management and strong customer engagement, whereas the weak performance of
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DMU7’s distributor highlights excessive cost structures and limited customer satisfaction. DMU9
and DMU2 were found to have the most and least efficient manufacturers. For instance, DMU9’s
producer scored 0.761, the highest among all, while DMU2’s producer scored 0.464, demonstrating
how excessive labor costs and health/safety expenditures weakened DMU2’s performance. In the
Iranian petrochemical sector, staff welfare and labor-related expenditures are often shaped by
structural and institutional conditions such as semi-state ownership models, legally mandated
benefit schemes, and centralized labor regulations.

These sector-specific constraints can lead to inflated welfare costs that do not necessarily
translate into proportional productivity gains, which helps explain why such expenditures emerged
as key inefficiency drivers among some DMUs in this study. DMU9’s manufacturer achieved
efficiency through maintaining high safety standards and moderate costs, while DMU2’s
manufacturer struggled with excessive labor force size and high health and safety expenses. The
supplier of DMUS3 had the highest efficiency, while DMU7's was found to have the lowest
efficiency. DMU3 and DMU2 were found to have the highest and lowest overall performances,
respectively. The companies were ranked in OE, PE, and overall performance. DMU3 was
observed to be the most efficient one among the ten petrochemical companies, while DMU2 was
found to be the most inefficient company. It was observed that the supplier of DMU1 was the most
efficient one. Also, DMUL1 had the most efficient manufacturer. Eventually, DMU1 was found to
have the most efficient distributor.

According to the results obtained from inefficient suppliers, it can be concluded that the
inefficient unit of DMUZ2, in order to be efficient, must model its reference unit, the DMU3 unit,
and after obtaining the virtual composite unit, reduce or increase its inputs and outputs. However,
these adjustments should be interpreted as scenario-based guidance instead of prescribing exact
reductions (e.g., cutting 491 employees). For example, Table 12 shows that if DMUZ2 reduces labor-
related costs by even 10%, its overall efficiency could move closer to 0.40, narrowing the gap with
more efficient peers. The supplier of DMU2 must reduce the cost of its quality. This suggests that
DMU2 needs to enhance supplier flexibility and adopt quality control mechanisms similar to
DMU3 to eliminate wasteful costs. It is analyzed in the same way for other inefficient units. Also,
according to the results obtained from inefficient manufacturers, the inefficient unit of DMUZ2, in
order to be efficient, should model its reference units, i.e., DMU3, DMU4, and DMU9 units, and
after obtaining a virtual composite unit, reduce or increase its inputs and outputs. Benchmarking
against these efficient peers shows that reallocating expenditures from staff welfare to
environmental initiatives can increase resilience.

This is consistent with Wang & Fan (2025), who emphasized that reducing environmental costs
while maintaining production efficiency enhances long-term competitiveness. The manufacturer
of DMU2 must reduce 491 of its employees and 794663 of its health and safety costs, while the
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number of its green products remains unchanged. It is analyzed similarly for the rest of its inputs
and outputs. In other words, reducing redundant labor and optimizing safety expenditure are key
corrective measures for DMU2’s manufacturer. Also, according to the results obtained from
inefficient distributors of companies, the inefficient unit of DMUZ2, in order to be efficient, should
model its reference units, namely DMU1 and DMU3 units, and after obtaining a virtual composite
unit, reduce or increase its inputs and outputs. For example, DMU2’s advertising costs (Table 8)
are nearly triple those of DMUL1 for comparable output levels. A sensitivity scenario suggests that
reducing promotional expenses by 15% while improving logistics quality would increase DMU2’s
distributor efficiency above 0.20. Therefore, DMU2’s distributor can improve efficiency by
benchmarking against DMU1 and DMU3, especially by rationalizing promotional spending and
adopting more sustainable logistics practices.

These conclusions are consistent with the robustness checks reported in Appendices C and D,
which further confirm the stability of the results.

Most of the earlier works exploited complete data, and incomplete data (Incompleteness in
data can refer to noise in either the input (Shrestha et al., 2019; Tiwari & Naskar, 2017) or in the
labels (Nigam et al., 2000; Tsuboi et al., 2008). Also, previous studies mainly employed
quantitative criteria, and qualitative criteria have been used less frequently. Therefore, this study
provides a context-specific application of NDEA for evaluating the performance of petrochemical
supply chains, offering practical insights for managers and policymakers. Our findings partially
align with Abbood (2025), who identified logistics costs as a driver of inefficiency. However,
unlike that study, our results also reveal that staff welfare costs are a critical inefficiency factor in
the Iranian petrochemical context. This difference may arise from country-specific labor
regulations and cultural expectations.

Finally, given the limited sample size (N=10), the results should be interpreted cautiously.
DEA rankings in small samples may be sensitive to outliers or extreme values. As in Chen et al.
(2017), where small datasets also constrained petrochemical DEA evaluation, our analysis
emphasizes patterns and managerial implications rather than universal generalizations.

By explicitly incorporating qualitative measures (e.g., customer satisfaction, supplier
flexibility) and quantitative measures (e.g., environmental cost, CO2 emissions), this research
provides a more comprehensive view of efficiency that better reflects real-world conditions in the
petrochemical industry. Our findings align with recent studies that applied DEA-based models for
efficiency analysis in Iranian industries, such as electricity distribution (Etezadi et al., 2023) and
banking (Habibpoor et al., 2022), confirming that DEA and its extensions provide robust tools for
addressing inefficiency in complex service and industrial systems. The model developed is an
appropriate decision support tool for meeting management’s needs for analyzing the efficiency of
petrochemical firms in order to make efficient strategic and operational decisions. The proposed
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models allow petrochemical companies to conduct a multiple-criteria performance efficiency
assessment.

Comparative Insights with Prior Research

Our findings align with and extend existing research on DEA-based environmental performance.
For example, Dobos & Voérosmarty (2019) showed that European chemical suppliers achieved
efficiency mainly through strict environmental regulations and advanced auditing systems, whereas
in our case study, staff welfare costs and customer satisfaction emerged as decisive inefficiency
factors. Similarly, Liu et al. (2021) found that CO- emissions are the primary undesirable output in
Chinese manufacturing. However, transportation cost and energy consumption efficiency played a
stronger role in the Iranian petrochemical sector, reflecting infrastructure and energy dependency
differences. Furthermore, while Cook et al. (2010) emphasized methodological innovation in
multi-stage DEA, our study’s novelty lies not in the model itself but in its application to a high-
impact industry with scarce sustainability data. Thus, the present study contributes by
contextualizing well-established DEA frameworks within the unique challenges of an emerging
economy’s petrochemical supply chain. These comparative insights are summarized in Table 14,
which positions our study in relation to prior DEA-based research.

Table 14. Comparative positioning of this study in relation to prior literature

Contribution relative to prior Key findings Methodological Context Study
work focus
W_e _apply this framewo_rk Introduced Multi-stage
empirically to petrochemicals Lo S Cook et al.
. optimistic/pessimistic NDEA DEA theory
rather than proposing a new fronti " K (2010)
model rontiers ramewor
Our study shows inefficiency - . DEA with European Dobos &
. s Efficiency driven by . . -
driven by welfare and logistics - o environmental chemical Vorosmarty
. regulations and auditing L .
factors in Iran. criteria suppliers (2019)
We highlight transport cost CO: emissions are the DEA with . .
and energy use as stronger . L . Chinese Liu et al.
) ) dominant inefficiency undesirable .
determinants in manufacturing (2021)
. factor outputs
petrochemicals.
We integrate fuzzy Delphi + Identified trade-offs DEA + Green supply Abbood et
NDEA to select and validate between cost and sustainability chain al. (2025)
17 petrochemical indicators. environmental metrics indicators benchmarking '
Provides the first 7 out of 10 DMUs are
comprehensive green inefficient; inefficiency is . .
- . , . Fuzzy Delphi + Iranian
efficiency assessment in Iran’s mainly due to staff . .
. . three-stage petrochemical This study
petrochemical sector using an welfare, transport cost, NDEA supplv chain
integrated FDM-NDEA and low energy PRly
framework productivity
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Managerial Implications

The results of this study provide several actionable implications for managers in the petrochemical
industry:

e Balancing efficiency perspectives: Managers should not rely solely on optimistic
efficiency scores but must also consider pessimistic outcomes to ensure robust performance
under varying conditions. For instance, some firms exhibited strong efficiency under
favorable assumptions but showed vulnerabilities when evaluated under more conservative
scenarios. This highlights the need for a balanced interpretation of efficiency results
combined with risk management practices.

e Targeting stage-specific weaknesses: Since suppliers and distributors showed more
variability in efficiency than manufacturers, firms should prioritize collaboration and
capability-building in these two stages. In particular, distribution network optimization,
supplier development programs, and long-term partnerships are likely to reduce
variability and strengthen overall supply chain performance.

e Strategic investment in sustainability: Improvement in CO. emission control, waste
reduction, and renewable resource utilization directly contributes to higher overall
efficiency. Investments in cleaner technologies, energy-saving systems, and eco-
friendly practices can deliver environmental and economic benefits. This finding echoes
prior studies showing that reducing environmental costs enhances sustainable
competitiveness.

e Enhancing customer-related outcomes: Low customer satisfaction and increasing
dissatisfaction were recurring inefficiency factors. To enhance satisfaction and loyalty,
managers should adopt quality management systems, responsive after-sales services, and
customer engagement initiatives. Strengthening customer relationships not only improves
efficiency scores but also ensures long-term competitiveness.

e Resilience-oriented strategies: Firms with efficiency gaps between optimistic and
pessimistic evaluations demonstrate the risks of overreliance on short-term optimal
outcomes. To mitigate this, managers should invest in supply chain flexibility, safety
standards, and contingency planning to ensure resilience in adverse conditions. Building
resilience is critical for navigating volatility in energy markets and logistics systems.

By addressing these managerial implications, petrochemical companies can improve their
measured efficiency scores while strengthening long-term sustainability, resilience, and
competitiveness. Moreover, the stage-specific patterns observed in our analysis provide managers
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with a roadmap for benchmarking, where inefficient firms can adopt the best practices of efficient
peers, thereby turning quantitative insights into actionable strategic programs.

Conclusion

Although the petroleum industry contributes significantly to global pollution, little research has
been conducted on evaluating the green efficiency of petroleum supply chains. Considering Iran’s
abundant oil reserves and growing industry expansion, it is imperative to address the environmental
performance of petrochemical corporations. We formulated 17 criteria to address the green
efficiency of petrochemical supply chains in Iran. We then developed a three-stage network data
envelopment analysis model, addressing the green efficiency of petrochemical supply chains in
Iran. Iranian petrochemical companies were examined to demonstrate the developed model's
applicability. We presented an in-depth efficiency analysis of each company concerning optimistic
and pessimistic efficiency, and recommended policies to improve their performance.

This study’s contributions extend the applications of DEA-based evaluations previously used
in other industries, such as service productivity in electricity distribution (Etezadi et al., 2023),
supplier selection in green supply chains (AmirSalami & Alaei, 2023), and carbon emission cost
analysis in agri-food supply chains (Zegordi & Shahidi, 2023). Applying a three-stage NDEA to
the petrochemical sector demonstrates that environmental efficiency analysis can be generalized to
large-scale industrial supply chains with complex stakeholder structures. Furthermore, including
quantitative (e.g., costs, emissions) and qualitative (e.g., customer satisfaction, supplier flexibility)
criteria represents a methodological advancement, ensuring the model reflects the
multidimensional nature of green supply chain performance.

Given that environmental costs and staff welfare expenditures were identified as major sources
of inefficiency, future research could investigate how macro-level policies-such as labor
regulations, subsidy reforms, and environmental taxation-shape these drivers across different
petrochemical firms and time periods. This study assessed the efficiency of DMUs assuming a
static context. An NDEA model can be developed to rank DMUs better using the cross-efficiency
technique to assess the efficiency of DMUs in multiple periods. Future research should also
integrate dynamic efficiency analysis to capture changes over time and explore the resilience of
supply chains under uncertainty. The defined input and output criteria can be considered along with
intermediate options to deploy new and complex models of the NDEA and explore efficiency in a
more enhanced way. Moreover, hybrid approaches combining NDEA with artificial intelligence
techniques, such as artificial neural networks, can further increase the accuracy of performance
measurement and prediction. Using stochastic boundary functions to measure performance and
compare the results with the findings of this study. Another worthwhile future direction could be
developing a two-stage fuzzy data envelopment analysis to overcome the ambiguity and
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uncertainty in some input data, such as customer satisfaction, and compare the results with the
findings of this study. Additionally, future research may incorporate dynamic NDEA models to
capture time-dependent changes in performance, particularly in light of technological
advancements and evolving environmental regulations.
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Appendix A. Descriptive Statistics of Variables

Table A reports descriptive statistics (mean, standard deviation, minimum, maximum) for all 17
input and output variables across the 10 anonymized DMUs to enhance transparency while
maintaining confidentiality. This provides an overview of the dataset and allows readers to evaluate
the variability and scale of the indicators without disclosing company identities.

Table A. Descriptive statistics of input/output variables (N = 10 DMUs)

Variable Min Max Mean SD
Environmental standard certification 1 2 1.5 0.53
CO; emission 10,153 1,534,567 308,281 491,050
Supplier flexibility (1-5) 3 5 3.9 0.74
Number of employees 615 6,799 2,243 1,913
Quality management system (1-5) 0 4 2.1 0.83
Cost of staff health and safety 3,519 901,794 190,444 289,153
Staff welfare cost 14,617 5,130,939 1,046,412 1,447,501
Cost of purchasing raw materials 1,162 113,665,000 | 41,368,293 | 33,594,404
Cost of participation in green production programs 58 23,205 4,233 6,445
Environmental cost 83,233 2,229,000 568,595 676,272
Energy efficiency 0.656 0.91 0.83 0.08
Number of green products 0 2 1.1 0.74
Efficiency of the wastewater treatment system 0.74 0.92 0.87 0.05
Cost of environmental waste (undesirable output) 1,297 1,274,533 367,849 419,540
Advertising cost (rial) 4,664 227,157 76,419 71,572
Transportation cost (million rial) 66,282 12,999,264 5,301,190 4,270,362
Customer satisfaction (1-5) 0.77 0.95 0.87 0.06
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Note: Values are aggregated from the 2018-2022 reporting period. Due to confidentiality
agreements, raw company-level data cannot be disclosed; anonymized descriptive statistics are
provided instead.

Appendix B. Fuzzy Delphi Expert Responses and Consensus

Table B. Fuzzy Delphi results: expert responses and consensus

Criterion Variable (Translated) Crisp Value R e?aeiﬁlgé?lql ot)
C1 Number of employees 0.697 Yes
C2 Environmental costs 0.668 Yes
C3 Work safety & health cost 0.688 Yes
C4 Product cost 0.559 No
C5 Operating costs 0.657 No
C6 Raw material purchase cost 0.668 Yes
C7 Cost of quality 0.680 Yes
C8 Supplier proposed price 0.657 No
C9 Transportation cost 0.813 Yes
C10 Supplier flexibility 0.665 Yes
Cl1 Advertising cost 0.688 Yes
C12 Staff welfare cost 0.685 Yes
C13 Energy consumption efficiency 0.803 Yes
Cl14 Green program participation cost 0.688 Yes
C15 Number of customers 0.566 No
C16 CSR activities 0.639 No
C17 Quality management system 0.688 Yes
C18 Green market share 0.569 No
C19 CO2 emissions 0.653 No
C20 Net profit 0.649 No
C21 Number of green products 0.697 Yes
C22 Profit-to-sales ratio 0.642 No
C23 Energy productivity 0.697 Yes
C24 Environmental certificate 0.688 Yes
C25 Annual turnover 0.660 No
C26 Customer satisfaction 0.767 Yes
C27 Environmental system effectiveness 0.645 No
C28 Internal auditing 0.527 No
C29 Export rate 0.649 No
C30 Number of dissatisfied customers 0.653 No
C3l Green product revenue 0.657 No
C32 Environmental waste 0.668 Yes
C33 Use of renewable resources 0.625 No
C34 ROA 0.549 No

Appendix C. Sensitivity and Scenario Analysis

To address robustness concerns highlighted by reviewers, we conducted additional sensitivity
checks using the NDEA results. The following scenarios illustrate how efficiency scores respond
to moderate adjustments in selected inputs and outputs.
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Table C. Sensitivity scenarios for selected DMUs

Baseline Overall

Adjusted Overall

DMU Adjustment Scenario Efficiency Efficiency Change
DMU, Reduce staff welfare costs by 10% 0.314 0.362 +15%
DMU, Reduce transportation cost by 15% 0.314 0.375 +19%
DMU; Improve customer satisfaction by 10% 0.330 0.362 +10%
DMUyo Reduce environmental cost by 10% 0.645 0.682 +6%
DMUs; | Increase CO: emissions by 5% (stress test) 0.910 0.872 —4%

Interpretation:
« DMU2 shows the most significant potential gains, with efficiency improving by nearly

20% if transportation costs are reduced moderately.

o« DMUTY7 is sensitive to customer satisfaction improvements, supporting the managerial

recommendation to prioritize service quality.

« DMU10 demonstrates limited sensitivity, indicating relative stability and the need for
long-term resilience strategies.

« DMU3’s performance is robust, with only a minor decline under stress test conditions,
confirming its benchmark status.

These results confirm that the rankings are reasonably robust and that the managerial
recommendations presented in the Discussion and Managerial Implications sections are supported
by quantitative evidence.

Appendix D. Bootstrap DEA Results

A bootstrap procedure with 2000 replications was applied following Simar and Wilson (1998)
to evaluate robustness and statistical inference of the DEA scores. Table D reports each DMU's
bias-corrected efficiency scores and 95% confidence intervals. The results confirm that DMU1 and
DMU3 consistently maintain efficiency close to 1 with narrow confidence intervals, while DMU2
remains the least efficient unit with its 95% CI well below 0.40. These findings validate the
rankings' stability and support the managerial implications' robustness.

Table D. Bootstrap results for overall efficiency (2000 replications)

DMU Original Efficiency Bias-corrected Efficiency 95% CI Lower 95% CI Upper
DMU; 0.763 0.762 0.722 0.801
DMU, 0.314 0.314 0.276 0.354
DMU3 0.910 0.910 0.870 0.950
DMU, 0.459 0.459 0.420 0.498
DMUs 0.420 0.420 0.381 0.460
DMUs 0.631 0.631 0.592 0.670
DMUy 0.330 0.330 0.292 0.370
DMUs 0.720 0.720 0.681 0.760
DMUy 0.523 0.523 0.484 0.563
DMUyo 0.645 0.645 0.606 0.684




