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Objective: Reducing waste and improving productivity are crucial challenges in today’s 
competitive manufacturing landscape. Lean production tackles these issues by 
eliminating activities that do not add value, cutting costs, and enhancing quality. 
However, the success of lean implementation relies on selecting strategies that align with 
an organization’s operational context. This study evaluates four fundamental lean 
strategies under various production conditions: Work-in-Progress (WIP) Inventory 
Reduction, Batch Size Reduction, Setup Time Reduction, and Multi-skilled Workforces.  

Methods: A hybrid methodology was utilized, integrating discrete-event simulation 
(DES) with multi-criteria decision-making (MCDM). Six scenarios were modeled, 
varying production capacity (low, medium, and high) and work shift schedules (one or 
two shifts). The Best-Worst Method (BWM) was employed to determine the weights of 
the evaluation criteria: total cost, available inventory, waiting time, and lead time. The 
VIKOR method was then used to rank the strategies for each scenario. 

Results: The results indicate that total cost (weight = 0.54) is the most critical evaluation 
criterion, followed by available inventory (0.27), waiting time (0.11), and lead time 
(0.08). Both simulation and VIKOR analyses demonstrated a contextual pattern: reducing 
setup time was more effective than other strategies in low-capacity environments. In 
contrast, reducing batch size consistently ranked highest in medium and high-capacity 
environments, regardless of the shift schedule. 

Conclusion: The findings highlight that lean strategies' effectiveness depends on the 
context. Reducing setup time is most beneficial for resource-limited systems, while 
reducing batch size offers greater advantages in high-output environments. The hybrid 
simulation-MCDM framework created in this study is a structured and objective tool for 
managers, allowing them to choose lean strategies aligned with their specific operational 
conditions. This, in turn, enhances supply chain performance and fosters long-term 
competitiveness. 
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Introduction 

Waste in manufacturing processes is defined as any action or resource that adds no value to the 

finished goods and can include unnecessary time, materials, energy, or costs. These wastes can 

manifest as excess inventory, waiting times, machine setup times, overproduction, unnecessary 

processes, inefficient transportation, unnecessary movements, and the production of defective 

products. Reducing or eliminating these wastes can improve productivity, reduce costs, and 

increase product quality (Kumar et al., 2022). 

The Iranian natural stone industry faces critical challenges concerning waste generation. 

According to studies, approximately 51% of the extracted materials from natural stone mines 

become waste during the extraction stage. In comparison, nearly 41% of the materials transported 

to processing plants become waste during processing. Consequently, only about 29% of the 

extracted materials are converted into marketable final products, indicating a considerable loss of 

resources and the generation of substantial waste (Jalalian et al., 2021). 

Lean manufacturing is a managerial philosophy aimed at improving productivity and quality 

by eliminating waste and focusing on value-adding activities. This approach seeks to optimize 

production processes through tools and techniques such as Just-in-Time (JIT), Kaizen (continuous 

improvement), value stream mapping, and workplace organization. Various strategies exist for 

implementing lean manufacturing in factories. Successfully applying these strategies can reduce 

costs and waste, improve quality, shorten production lead times, and enhance customer satisfaction 

(Bizuneh & Omer, 2024; Ferrazzi et al., 2025).  

According to a report by the United States Environmental Protection Agency (EPA), 

implementing lean strategies has generated annual cost savings of nearly USD 1.5 million. 

Moreover, reduced resource consumption, improved product quality, and enhanced customer 

satisfaction have strengthened firms’ competitive position in the market.  

Given the high levels of waste in Iran’s natural stone industry, implementing lean 

manufacturing strategies can significantly reduce waste and improve productivity. Therefore, the 

main objective of the present study is to evaluate lean manufacturing strategies in the natural stone 

industry by employing DES and hybrid MCDM methods. 

In the following parts of this study, the related literature is presented in the second section; the 

third section presents problem description and case study; the fourth section describes the proposed 

methodology. The results and analysis are presented in the fifth section. Finally, in the sixth section, 

conclusions and future research are provided. 
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Literature Background 

Lean Manufacturing and Decision-Making Systems 

Lean manufacturing has been introduced as a comprehensive managerial philosophy to eliminate 

waste, continuously improve, and enhance customer value through optimizing production 

processes (Womack & Jones, 1997). Emerging from the Toyota production system, this approach 

has attracted widespread attention in various industries over recent decades. Recent studies indicate 

that lean strategies improve productivity, reduce lead times, and increase customer satisfaction. 

Moreover, adopting lean manufacturing requires technical tools, organizational readiness, 

leadership commitment, and an appropriate organizational culture (Shah & Ward, 2007). Also, due 

to its dynamic and multidimensional nature, a precise evaluation of lean manufacturing strategies 

requires advanced analytical tools. 

Lean manufacturing should be considered an integrated socio-technical system encompassing 

technical tools and requiring effective coordination among supply chain partners, cross-functional 

collaboration, and adopting digital technologies to enhance operational visibility and 

responsiveness. Furthermore, the successful implementation of this approach necessitates aligning 

lean strategies with digital capabilities, alongside a strong emphasis on continuous learning and 

employee empowerment (Ejsmont et al., 2020; Nazari-Shirkouhi & Zarei Babaarabi, 2025). 

Nevertheless, the practical implementation of lean manufacturing faces challenges such as 

employee resistance to change, resource constraints, and difficulties in measuring long-term 

benefits. In other words, the success of lean manufacturing is highly contingent upon the contextual 

conditions of each organization; factors such as company size, product complexity, process 

maturity, and even national culture can significantly influence its effectiveness (Izadyar et al., 

2020; Xu et al., 2024). From this perspective, lean manufacturing cannot be considered a one-size-

fits-all solution; instead, it must be designed and adapted per environmental conditions, 

organizational structures, and strategic objectives. Therefore, assessing and evaluating lean 

strategies should account for these contextual differences to create sustainable value for the 

organization and its stakeholders. 

Discrete-event simulation, as a tool for analyzing the dynamic behavior of systems over time, 

enables the prediction of the impacts of implementing lean manufacturing strategies (Uriarte et al., 

2018). Tanasic et al. (2022) evaluated the impact of implementing lean techniques, including the 

5S system, total productive maintenance, and setup time reduction through simulation in a 

European manufacturing company. Their findings revealed that these lean practices increased labor 

productivity by up to 22% and reduced overall production time. Uriarte et al. (2018) investigated 

the impact of combining lean tools such as value stream mapping, pull production, and Kaizen by 
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modeling production processes in a European automotive company using discrete-event 

simulation. They identified scenarios with the lowest waiting times and highest resource utilization. 

Harrison and Chowdary (2023) developed two Arena-based simulation models, one reflecting 

the existing system and the other integrating lean interventions with Industry 4.0 technologies. The 

results demonstrated that the proposed actions reduced cycle time by 46%, waiting time by 57%, 

and work-in-process inventory by 61%. Likewise, Félix-Jácquez et al. (2025) designed a diesel 

engine remanufacturing line by integrating simulation with supply chain management tools. 

Applying value stream mapping and workflow adjustments reduced the total project lead time to 

less than 215 hours. 

Azzolini Júnior et al. (2025) designed and implemented a tool to support the execution of lean 

manufacturing practices by integrating simulation with a hierarchical approach based on the 

Moore–Hodgson algorithm and a genetic algorithm. They further evaluated the performance of 

lean strategies in a textile production system, focusing on material handling and machine setup 

times. They employed DES to test scenarios, optimize decisions, and assess the improvements.  

MCDM techniques compare alternatives and select optimal solutions for conflicting criteria 

(Jeong et al., 2018). Wan et al. (2014) applied the analytic hierarchy process to identify key lean 

tools in the manufacturing sector. Their findings indicated that implementing total productive 

maintenance and the 5S methodology significantly reduced the gap between actual and desired 

performance. Prasad et al. (2016) proposed a comprehensive approach for ranking lean strategies 

in the Indian foundry industry. By integrating SWOT, ANP, and TOPSIS methods, they evaluated 

existing strategies and demonstrated that TPM, Kanban, and Kaizen held higher priority than other 

alternatives. Hussain and Malik (2016), in a study of public and private hospitals in the United 

Arab Emirates, identified and prioritized different types of waste, such as waiting time, inventory, 

and transportation, using AHP. The results revealed that waiting time and excessive employee 

movements were among the critical areas where lean practices could yield significant 

improvements. 

Jeong et al. (2018) employed the fuzzy VIKOR method to evaluate lean production system 

design alternatives in the Chinese construction industry. By considering variables such as 

feasibility, risk tolerance, and return on investment, they developed a group decision-making model 

that demonstrated strong performance in selecting the optimal option. Aminjarahi et al. (2021) 

applied the SAW and VIKOR methods to rank lean tools in the emergency department of a hospital. 

Their findings revealed that the medical staff perceived Jidoka and the 5S methodology as the most 

critical factors in improving emergency department performance.  

Narula et al. (2023) integrated MCDM with Industry 4.0 concepts to evaluate lean strategies. 

They demonstrated that combining big data, the internet of things (IoT), and decision-making 
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models can significantly enhance the accuracy of lean performance assessments in complex 

environments. Odeyinka and Akinwale (2024) developed a hybrid decision-making model 

combining fuzzy BWM and TOPSIS for selecting Lean–Six Sigma projects. They considered cost, 

lead time, and strategic impact criteria, and implemented the model in consulting firms. The results 

indicated improved accuracy in selecting optimal projects. 

A summary of studies on lean manufacturing using simulation and MCDM methods is 

presented in Table 1. 

Table 1. A Review of the Research Conducted 

Author (s). Year Lean Manufacturing Strategies Simulation MCDM 

Wan et al. (2014) *  * 

Prasad et al. (2016) *  * 

Hussain and Malik (2016) *  * 

Uriarte et al. (2018) * *  

Jeong et al. (2018) *  * 

Aminjarahi et al. (2021) *  * 

Tanasic et al. (2022) * *  

Harrison and Chowdary (2023) * *  

Narula et al. (2023) *  * 

Odeyinka and Akinwale (2024) *  * 

Félix-Jácquez et al. (2025) * *  

Our Paper * * * 

To our knowledge, no research in the literature integrates discrete event simulation and hybrid 

MCDM for evaluating lean manufacturing strategies, as shown in Table 1. 

Materials and Methods 

This study adopts an analytical, quantitative, and applied approach regarding its objectives, 

methodology, and outcomes. It combines DES and hybrid MCDM, utilizing real operational data 

and expert insights. 

First, discrete-event simulation models were developed under multiple scenarios to assess lean 

manufacturing strategies in a natural stone production facility, using five lean evaluation criteria. 

Following this, a hybrid MCDM framework was applied, combining the BWM for determining 

criteria weights and the VIKOR method for ranking the lean strategies. 

The inputs for the VIKOR method included the outputs from the simulation models and the 

criteria weights obtained via BWM. The lean evaluation criteria and strategies were identified 

through a comprehensive literature review and structured interviews with industry experts. These 

criteria and strategies are summarized in Tables 2 and 3, respectively. 
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Table 2. Lean Manufacturing Evaluation Criteria 

Evaluation Criterion Code Explanation Researcher/ Year 

Lead Time C1 

It is the time between the start of a process (e.g., placing 

an order) and its end (e.g., receiving a product or 

service). 

Simchi-Levi et al. 

(2008) 

Waiting Time C2 
When a customer or a work unit waits in a queue for the 

completion of product or service processing. 

Lashkevich et al. 

(2024) 

Available Inventory C3 
The inventory of finished goods that a factory currently 

holds to meet demand. 
Aldrighetti et al. 

(2021) 

Total Cost C4 
The total of production, ordering, holding, and 

backorder costs. 
Jeong et al. (2018) 

 

Table 3. Lean Manufacturing Strategies 

Lean Manufacturing Strategy Code 

WIP Inventory Reduction S1 

Batch Size Reduction S2 

Setup Time Reduction S3 

Multi-skilled Workforces S4 

Simulation Model 

Simulation is one of the standard analytical approaches in engineering and management sciences, 

enabling the recreation and modeling of real system behavior in a computer-based environment. 

Computer simulation refers to a set of methods employed to study and analyze models of real 

systems by conducting numerical evaluations and reproducing system operations and 

characteristics over specified time intervals (Kogler & Rauch, 2018). The steps involved in 

conducting a simulation are illustrated in Figure 1 (Banks et al., 2015). 

This study considered a two-tier supply chain of the natural stone industry. A base simulation 

model encompassing production and distribution processes was designed in the first step. 

Subsequently, simulation models for each lean manufacturing strategy were developed by applying 

modifications to the base model under different scenarios. All simulation models were created 

using Arena software. 
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Figure 1. The Simulation Process 

Case Study 

Natural Stone Industry 

Natural stone is a highly demanded product. Numerous Iranian factories produce various natural 

stones with different dimensions and applications, such as travertine, granite, marble, onyx, 

antique, and crystalline. The supply chain of the natural stone consists of suppliers (stone quarries), 

manufacturers (stone-cutting factories), distribution centers (wholesalers and retailers), and end 

customers. In this chain, large stone blocks of various dimensions are extracted from quarries and 

transported by trucks to cutting factories. After undergoing production processes in the factory, the 

stones are purchased in different dimensions by wholesalers and retailers (distribution centers) and 

subsequently delivered to end consumers. This study considers a two-tier supply chain comprising 

production and distribution processes in the natural stone industry. 

 



 

 
 
Modeling Lean Manufacturing Strategies in the Supply Chain…| Mirzaaliyan, et al. 

 

 

187 

Production Process of Natural Stone 

The stone blocks extracted from quarries enter the factory as raw materials and are unloaded using 

fixed cranes. These blocks are then placed on movable wagons to be transferred to the gang saw 

machine. At this stage, the gang saws the blocks into large slabs with varying thicknesses. After 

this initial cutting, the stone slabs are directed to the longitudinal cutting machine, which slices 

them lengthwise according to the predetermined dimensions set by the operators. Subsequently, 

the slabs are transferred to the cross-cutting machine and divided into specified sizes. 

Conveyor belts then move the cut stones to the drying machine to eliminate any remaining 

moisture. Afterward, they are transferred to the resin treatment section, where the cavities in the 

stones are filled with resin materials. After resin application, the stones are again passed through 

the drying machine to ensure proper curing. In the final stage, the resin-coated stones undergo 

polishing, during which their surfaces are ground and finished to achieve a smooth, shiny, and 

glossy appearance. Finally, the stones are sorted and categorized according to size, priced, and 

prepared for market distribution.  

Base Simulation Model 

The base simulation model, shown in Figure 2, is divided into two main sections: the production 

process of natural stone and the distribution and delivery. In the production stage, each working 

day begins with a stone block entering the gang saw machine, which is cut into slabs. These slabs 

are stored in the work-in-process (WIP) inventory and then sequentially processed. A batch is first 

sent to the longitudinal cutting machine, then to the cross-cutting machine, and the next batch enters 

the longitudinal cutter. This cycle continues until all slabs in the WIP inventory are processed. Each 

batch must pass through the longitudinal cutter, cross-cutter, dryer, resin treatment, and polishing 

machines. Once completed, the slabs are added to the finished product inventory and available for 

customer delivery. 

As depicted in Figure 2, the second section of the model represents the customer demand 

fulfillment process. Here, two conditions are evaluated: (1) the availability of sufficient inventory, 

and (2) the absence of backorder demand in the system. Customer demand is fulfilled if both 

conditions are satisfied, and the corresponding amount is deducted from the inventory. Otherwise, 

the demand is added to the backorder queue until the inventory level becomes sufficient to satisfy 

it. 
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Figure 2. The Base Simulation Model 

The Input Variables and Parameters 

The input variables and parameters of the simulation models were derived from real-world data, as 

presented in Table 4. The Input Analyzer tool in Arena software was employed to identify the best-

fit distribution functions. Specifically, all available data from recent periods, required for the 

simulation models, were entered into the Input Analyzer. The results indicated that the square error 

of each fitted distribution function was less than 0.004. 

Table 4. Input Variables and Parameters of the Simulation Model 

Variable / Parameter Distribution Function / Value Unit 

Safety Stock (min, average, max) = (240, 420, 600) Tons 

Production Capacity 600 m² 

Batch Size 30 m² 

Production Time Constant (8) Hours 

Number of Daily Orders Received DISC (0.4, 0, 0.75, 1, 0.9, 2, 1, 3)  

Order Size 100 + EXPO (220) m² 

Machine Setup Time Constant (20) Minutes 

Gang Saw Operation Time per Unit Constant (2) Minutes 

Longitudinal Cutting Operation Time per Unit Constant (5) Minutes 

Cross-Cutting Operation Time per Unit Constant (3) Minutes 

Dryer Operation Time per Unit Constant (4) Minutes 

Resin Treatment Operation Time per Unit Constant (3) Minutes 

Polishing Operation Time per Unit Constant (10) Minutes 
 

Scenario Analysis 

Under each of the lean manufacturing strategies, six types of scenarios are defined. Their titles are 

presented separately for each strategy in Table 5. 
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Table 5. Simulation Scenarios 

Scenario No. Strategy Scenario Definition 

1 

WIP Inventory 

Reduction 

Low production capacity and one shift (Type 1 scenario) 

2 Medium production capacity and one shift (Type 2 scenario) 

3 High production capacity and one shift (Type 3 scenario) 

4 Low production capacity and two shifts (Type 4 scenario) 

5 Medium production capacity and two shifts (Type 5 scenario) 

6 High production capacity and two shifts (Type 6 scenario) 

7 

Batch Size Reduction 

Low production capacity and one shift (Type 1 scenario) 

8 Medium production capacity and one shift (Type 2 scenario) 

9 High production capacity and one shift (Type 3 scenario) 

10 Low production capacity and two shifts (Type 4 scenario) 

11 Medium production capacity and two shifts (Type 5 scenario) 

12 High production capacity and two shifts (Type 6 scenario) 

13 

Setup Time Reduction 

Low production capacity and one shift (Type 1 scenario) 

14 Medium production capacity and one shift (Type 2 scenario) 

15 High production capacity and one shift (Type 3 scenario) 

16 Low production capacity and two shifts (Type 4 scenario) 

17 Medium production capacity and two shifts (Type 5 scenario) 

18 High production capacity and two shifts (Type 6 scenario) 

19 

Multi-skilled 

Workforces 

Low production capacity and one shift (Type 1 scenario) 

20 Medium production capacity and one shift (Type 2 scenario) 

21 High production capacity and one shift (Type 3 scenario) 

22 Low production capacity and two shifts (Type 4 scenario) 

23 Medium production capacity and two shifts (Type 5 scenario) 

24 High production capacity and two shifts (Type 6 scenario) 

Best-Worst Method 

In MCDM methods, a set of alternatives is evaluated against multiple criteria for selecting the most 

appropriate option. The BWM, introduced by Rezaei in 2015, is based on selecting the best and 

worst criteria by the decision-maker. The procedure involves pairwise evaluations in which the 

best criterion is compared against all others, while the others are contrasted with the worst 

criterion. Subsequently, a max–min optimization model is formulated and solved to find out the 

weights of the criteria. Finally, a consistency ratio is calculated to assess the accuracy of the 

comparisons (Rezaei, 2015; 2016). 

One of the advantages of BWM over other MCDM methods is its significant reduction in 

pairwise comparisons, which simplifies the evaluation process and enhances efficiency. BWM has 

been applied in various domains, including supply chain and logistics performance evaluation, 

technology assessment, and selection of green innovation. 

The main steps of BWM are as follows (Rezaei, 2015): 

1. Identifying the set of decision criteria: 
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At this stage, the decision-maker defines the criteria required for decision-making as {𝐶1, 𝐶2, 

…, 𝐶𝑛}. 

2. Selecting the best (most desirable, top-priority) and the worst (least desirable, lowest-

priority) criteria: 

Here, the best and worst criteria are identified in general terms, without comparing them. 

3. Assigning a rating on a 1–9 scale to indicate the relative preference of the best criterion over 

all other criteria (elicited from experts): 

The preference vector of the best criterion over all others is denoted as 𝐴𝐵 =

(𝑎𝐵1, 𝑎𝐵2, … , 𝑎𝐵𝑛). In this vector, 𝑎𝐵𝑗  denotes how the best criterion (B) is favored over criterion 

j, (𝑎𝐵𝐵=1).  

4. Establishing how strongly each criterion is favored compared to the worst criterion through 

a numerical rating from 1 to 9 (elicited from experts): 

The Vector of relative preferences of the other criteria over the worst criterion is denoted as 

𝐴𝑊 = (𝑎1𝑊 , 𝑎2𝑊 , … , 𝑎3𝑊)𝑇. In this vector, 𝑎𝑗𝑊 represents the preference of criterion j over the 

worst criterion (W), where it is clear that 𝑎𝑊𝑊 = 1.   

5. Deriving the optimal weights (𝑉1
∗, 𝑉2

∗, … , 𝑉𝑛
∗): 

To determine the optimal weights of the criteria, the following conditions are considered: 
𝑉𝐵

𝑉𝑗
=

𝑎𝐵𝑗 and 
𝑉𝑗

𝑉𝑤
= 𝑎𝑗𝑤. In order to satisfy these conditions for all j, a solution is required that minimizes 

the maximum absolute differences |
𝑉𝐵

𝑉𝑗
− 𝑎𝐵𝑗| and |

𝑉𝑗

𝑉𝑤
− 𝑎𝑗𝑤| for all j. Considering the non-

negativity of weights and the constraint that their sum equals one, the following formulation 

represents the model: 

𝑚𝑖𝑛 𝑚𝑎𝑥
𝑗

{|
𝑉𝐵

𝑉𝑗
− 𝑎𝐵𝑗| , |

𝑉𝑗

𝑉𝑤
− 𝑎𝑗𝑤|}                                                                                                                                             (1) 

     s.t                                                                                                                                                              

∑ 𝑉𝑗

𝑗

= 1 

𝑉𝑗 ≥ 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 
 

It is also possible to transform the above model into Model 2: 

𝑚𝑖𝑛 𝜉                                                                                                                                                                 (2)  

s.t. 
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|
𝑉𝐵

𝑉𝑗
− 𝑎𝐵𝑗| ≤ 𝜉 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗   

|
𝑉𝑗

𝑉𝑤
− 𝑎𝑗𝑤| ≤ 𝜉 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗  

∑ 𝑉𝑗

𝑗

= 1 

𝑉𝑗 ≥ 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

The linear programming formulation of the above model is presented in detail below. The lean 

manufacturing evaluation criteria weights are derived using the linear BWM model in this study.  

𝑚𝑖𝑛 𝝃                                                                                                                                                                                             (3) 

   s.t                                                                                                                                                                

|𝑉𝐵 − 𝑎𝐵𝑗  𝑉𝑗| ≤ 𝜉 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗  

|𝑉𝑗 − 𝑎𝑗𝑤𝑉𝑤| ≤ 𝜉 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗  

∑ 𝑉𝑗

𝑗

= 1 

𝑉𝑗 ≥ 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

By solving Equation 3, the optimal weights (𝑉1
∗, 𝑉2

∗ , … , 𝑉𝑛
∗) and the optimal value 𝜉∗ are obtained.  

Calculating the Consistency Ratio 

Comparisons between criteria are entirely consistent if the following relationship holds for each 

criterion (j). 𝑎𝐵𝑗 × 𝑎𝑗𝑤 = 𝑎𝐵𝑤 

In BWM, the consistency ratio (CR) is calculated using Equation (4) and the consistency index 

table (Table 6). The CR takes a value between 0 and 1, where values closer to zero indicate higher 

consistency, while values closer to one reflect lower consistency. 

𝐶𝑅 =
𝜉∗

𝐶𝐼
                                                                                                                                          (4) 

Table 6. Consistency Indices 

9 8 7 6 5 4 3 2 1 𝒂𝑩𝒘 

5.23 4.47 3.73 3 2.3 1.63 1 0.44 0 (CI) 

The VIKOR Method 

The VIKOR method was first introduced by Opricovic in 1998 and later developed by Opricovic 

and Tzeng in 2004 to optimize MCDM in complex systems. VIKOR derives from a Serbian phrase 

meaning “compromise solution” in multi-criteria decision-making. This method focuses on ranking 

alternatives and selecting the best among options. Employing a compromise measure identifies a 
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solution that balances conflicting criteria and assists decision-makers in reaching the final decision 

(Opricovic & Tzeng, 2004). 

The steps of the VIKOR method are as follows: 

1. Construct the decision matrix 

Dk = [
𝑑11 … 𝑑1𝑛

: . :
𝑑𝑚1 … 𝑑𝑚𝑛

] 

where xij represents the performance of alternative i evaluated against criterion j, i=1, 2, …, m 

and j=1, 2, …, n 

2. Compute the average decision matrix 

D = 
1

𝑘
∑ D𝑘

𝑘
𝑘=1                                                                                                                                    (5)  

where D denotes the aggregated decision matrix and K represents the number of experts. 

3. Normalize the decision matrix 

𝑓𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 , i = 1,2, … , m , j = 1,2, … , n                                                                                      (6)  

4. Find out the positive and negative ideal solutions 

𝐴+ = {𝑓1
∗, … , 𝑓𝑛

∗} = {
𝑐𝑗  → 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 →  𝐴∗ = max

𝑖
{𝑓𝑖𝑗}

𝑐𝑗 → 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 →  𝐴∗ =  min
𝑖

{𝑓𝑖𝑗}
 }                                                                    (7) 

𝐴− = {𝑓1
−, … , 𝑓𝑛

−} = {
𝑐𝑗  → 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 →  𝐴− = min

𝑖
{𝑓𝑖𝑗}

𝑐𝑗 → 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 →  𝐴− =  max
𝑖

{𝑓𝑖𝑗}
 }                                                                 (8)  

5. Compute the utility and regret measures for each alternative 

𝑆𝑖 = ∑ (𝑉𝑗 ×
(𝑓𝑗

∗−𝑓𝑖𝑗)

(𝑓𝑗
∗−𝑓𝑗

−)
)𝑛

𝑗=1 , i = 1,2, … , m, j = 1,2, … , n                                                                            (9)  

𝑅𝑖 = max
𝑗

(𝑉𝑗 ×
(𝑓𝑗

∗−𝑓𝑖𝑗)

(𝑓𝑗
∗−𝑓𝑗

−)
) , i = 1,2, … , m , j = 1,2, … , n                                                                                (10)  

where 𝑆𝑖 indicates the average regret of alternative i, 𝑅𝑖 represents the maximum regret of 

alternative i, and 𝑉𝑗 is the weight of criterion j. 

𝑆∗ = 𝑚𝑖𝑛{𝑆𝑖}                                                                                                                                             (11) 

𝑅∗ = 𝑚𝑖𝑛{𝑅𝑖}                                                                                                                                            (12) 

𝑆− = 𝑚𝑎𝑥{𝑆𝑖}                                                                                                                                             (13) 
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𝑅− = 𝑚𝑎𝑥{𝑅𝑖}                                                                                                                                           (14) 

6. Calculate the VIKOR index (Qi) 

𝑄𝑖 = 𝑣 × 
(𝑆𝑖−𝑆∗)

(𝑆−𝑆∗ + (1 − 𝑣) ×
(𝑅𝑖−𝑅∗)

(𝑅−𝑅∗                                                                                  (15)  

where v is the VIKOR weight (between 0 and 1). In most applications, v=0.5 is assumed. 

Values of v closer to 1 emphasize maximizing overall utility, while values closer to 0 minimize 

individual regret (Amiri et al., 2017). 

7. Prioritize the alternatives 

Finally, the alternatives are ranked according to their Qi values. The option with the lowest 

VIKOR index is considered the best compromise solution. 

The conceptual framework of the present study is shown in Figure 3. 
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Figure 3. The Conceptual Framework 



 

 
 

Industrial Management Journal, Volume 17, Issue 3, 2025 

 

 

194 

Results 

Outputs of the Base Simulation Model 

The base simulation model runs for one year (365 working days) with 100 replications. In this 

model, the warm-up period was set to zero, since the system and production process are restarted 

at the beginning of each day. In the natural stone industry, this period can be considered negligible. 

The average values of the performance indicators obtained from the simulation are as follows: 1. 

Lead time: 9 hours; 2. Waiting time: 10 hours; 3. Available inventory: 3,600 m²; 4. Total cost: 

630,500,000,000 IRR 

Verification and Validation of the Base Simulation Model 

For the verification of the base simulation model, different parts of the model were reviewed and 

confirmed by experts during its development. The average results from 100 simulation replications 

were compared with the available data to validate the base simulation model in Arena. The Mean 

Absolute Error (MAE), as a standard prediction error metric, was used for evaluation. The results 

indicated that the MAE values for all performance measures were less than 0.05, confirming the 

base model's validity. 

Outputs of the Simulation Models for Lean Manufacturing Strategies 

The performance of each lean manufacturing strategy was evaluated under varying conditions, 

including different production capacities (low, medium, and high) and varying numbers of working 

shifts (1 or 2). Scenarios were generated through combinations of production capacity and the 

number of shifts. As previously discussed, six scenarios were designed for each lean manufacturing 

strategy. The results of running the simulation models, categorized by performance criteria, are 

presented in Tables 7 to 10. 

Table 7. Outputs of simulation models of lean manufacturing strategies relative to lead time (hours) 

Strategy 
Number of 

Shifts 

Low 

Capacity 

Medium 

Capacity 

High 

Capacity 

Inventory Reduction in Work-in-Process 
1 30 24 20 

2 22 14 11 

Batch Size Reduction 
1 20 16 12 

2 14 10 7 

Setup Time Reduction 
1 17 13 11 

2 12 8 7 

Multi-skilled Workers 
1 13 8 6 

2 6 5 3 
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Table 8. Outputs of simulation models of lean manufacturing strategies relative to waiting time 

(hours) 

Strategy 
Number of 

Shifts 
Low 

Capacity 
Medium 
Capacity 

High 
Capacity 

Inventory Reduction in Work-in-Process 
1 27 23 19 
2 20 13 10 

Batch Size Reduction 
1 19 14 10 
2 12 9 6 

Setup Time Reduction 
1 15 11 9 
2 10 7 6 

Multi-skilled Workers 
1 11 6 4 
2 5 3 2 

Table 9. Outputs of simulation models of lean manufacturing strategies relative to available 

inventory (m2) 

Strategy 
Number of 

Shifts 
Low 

Capacity 
Medium 
Capacity 

High 
Capacity 

Inventory Reduction in Work-in-Process 
1 240 450 630 
2 170 210 420 

Batch Size Reduction 
1 980 1120 1540 
2 760 890 1120 

Setup Time Reduction 
1 1030 1520 2050 
2 1980 2700 3610 

Multi-skilled Workers 
1 1810 2200 3070 
2 2670 3400 4940 

Table 10. Outputs of simulation models of lean manufacturing strategies relative to total cost 

Strategy 
Number of 

Shifts 

Low 

Capacity 

Medium 

Capacity 

High 

Capacity 

Inventory Reduction in Work-in-Process 
1 39 44 51 

2 42 49 58 

Batch Size Reduction 
1 36 41 54 

2 40 46 60 

Setup Time Reduction 
1 41 49 57 

2 44 54 64 

Multi-skilled Workers 
1 46 51 59 

2 49 58 65 

Weighting of Lean Manufacturing Evaluation Criteria Using the BWM 

The opinions of experts in the natural stone industry were utilized to calculate the weights of lean 

manufacturing evaluation criteria. In the first step, each expert identified the best and worst criteria. 

Next, all experts expressed their judgments regarding how the best criterion is preferred over the 

others, and how the remaining criteria compare to the worst one. Subsequently, the linear 

programming model of the BWM was formulated based upon Equation (3) using LINGO version 

17, and by solving the model, the weight of each criterion was determined. Since an individual 

optimal weight was obtained from each expert’s judgment, the weights were aggregated using their 

geometric mean to derive a single integrated weight for each criterion. The weights of all criteria 

are presented in Table 11. 
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Table 11. Weight of lean manufacturing evaluation criteria 

4C 3C 2C 1C Criterion 

0.54 0.27 0.11 0.08 Final Weight 

As shown in Table 11, the total cost criterion carries the highest weight (0.54), while the lead 

time criterion has the lowest weight (0.08) for evaluating lean production strategies. The 

consistency ratio is a numerical value between 0 and 1, where values closer to zero indicate higher 

consistency, and conversely, values closer to one indicate lower consistency (Rezaei, 2015). In this 

study, the consistency ratio was calculated as 0.011, indicating that the obtained results are 

acceptable. 

Ranking Lean Manufacturing Strategies Using the VIKOR Method 

After obtaining the lean manufacturing evaluation criteria weights, the lean manufacturing 

strategies were ranked using the VIKOR method. The simulation and Best-Worst methods outputs 

were considered inputs to the VIKOR method. Lean manufacturing strategies were ranked for each 

scenario to determine the most suitable under each condition. Therefore, in this study, six different 

decision matrices were constructed, and the aggregated averages of these matrices are presented in 

Table 12. The VIKOR outputs for each scenario are provided in Tables 13 to 18. 

Table 12. Decision Matrix 

4C 3C 2C 1C Strategy Scenario 

39 240 27 30 1S 

Type 1 
36 980 19 20 2S 

41 1030 15 17 3S 

46 1810 11 13 4S 

44 450 23 24 1S 

Type 2 
41 1120 14 16 2S 

49 1520 11 13 3S 

51 2200 6 8 4S 

51 630 19 20 1S 

Type 3 
54 1540 10 12 2S 

57 2050 9 11 3S 

59 3070 4 6 4S 

42 170 20 22 1S 

Type 4 
40 760 12 14 2S 

44 1980 10 12 3S 

49 2670 5 6 4S 

49 210 13 14 1S 

Type 5 
46 890 9 10 2S 

54 2700 7 8 3S 

51 3400 3 5 4S 

58 420 10 11 1S 

Type 6 
60 1120 6 7 2S 

64 3610 6 7 3S 

65 4940 2 3 4S 
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Table 13. Ranking of lean manufacturing strategies based on scenario type 1 

Rank     Q   R S Lean Manufacturing Strategies 

4 1 0.053000345 0.159450761 1S 

2 0.164556826 0.026517665 0.071689616 2S 

1 0.119770677 0.024625008 0.06896827 3S 

3 0.281235903 0.040585335 0.040466657 4S 

Table 14. Ranking of lean manufacturing strategies based on scenario type 2 

Rank Q R S Lean Manufacturing Strategies 

4 1 0.053922661 0.160885066 1S 

1 0.089030745 0.028024059 0.077245779 2S 

2 0.108874775 0.026939095 0.084996753 3S 

3 0.478473456 0.052760935 0.063872258 4S 

Table 15. Ranking of lean manufacturing strategies based on scenario type 3 

Rank     Q   R S Lean Manufacturing Strategies 

3 0.48772415 0.045754134 0.094762081 1S 

1 0.024221833 0.028271428 0.061994644 2S 

2 0.165973655 0.026484421 0.086002171 3S 

4 1 0.063372765 0.13431795 4S 

As shown in Tables 13 to 15, the setup time reduction strategy ranks first when production 

capacity is low and the factory operates with a single shift. In contrast, the batch size reduction, 

multi-skilled workforces, and WIP inventory reduction strategies rank second, third, and fourth, 

respectively, for implementation. Conversely, when production capacity is medium and the factory 

operates with a single shift, the batch size reduction strategy ranks first, the setup time reduction 

strategy ranks second, and the multi-skilled workforces and WIP inventory reduction strategies 

rank third and fourth, respectively. Moreover, when the factory has high production capacity and 

operates with a single shift, the batch size reduction, setup time reduction, multi-skilled workforces, 

and WIP inventory reduction strategies achieve the first to fourth ranks, respectively, for 

implementation. 

Table 16. Ranking of lean manufacturing strategies based on scenario type 4 

Rank     Q   R S Lean Manufacturing Strategies 

3 0.82038625 0.047745941 0.105701492 1S 

2 0.137772667 0.027371614 0.085355919 2S 

1 0.023777772 0.028454679 0.07344382 3S 

4 1 0.05014634 0.116674816 4S 

Table 17. Ranking of lean manufacturing strategies based on scenario type 5 

Rank Q R S Lean Manufacturing Strategies 

3 0.708713615 0.050443238 0.114907102 1S 

1 0.037017723 0.030813533 0.075304838 2S 

2 0.158910653 0.028423868 0.09242381 3S 

4 1 0.060701169 0.129168352 4S 
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Table 18. Ranking of lean manufacturing strategies based on scenario type 6 

Rank     Q   R S Lean Manufacturing Strategies 

3 0.489425 0.049687743 0.1099924 1S 

1 0.001639 0.031039523 0.067625014 2S 

2 0.187199 0.030898491 0.096877193 3S 

4 1 0.073934892 0.145756152 4S 

Based on the results presented in Tables 16 to 18, when the factory has low production capacity 

and operates with two shifts, the setup time reduction strategy ranks first, the batch size reduction 

strategy ranks second, and the WIP inventory reduction and multi-skilled workforces strategies 

rank third and fourth, respectively. Furthermore, under conditions where the factory has low or 

medium production capacity and operates with two shifts (scenario types 5 and 6), the strategies 

rank from first to fourth: batch size reduction, setup time reduction, WIP inventory reduction, and 

multi-skilled workforces. 

Conclusion 

Based on lean manufacturing evaluation criteria, this study employed DES and integrated MCDM 

methods to evaluate four lean manufacturing strategies in the natural stone industry. To this end, 

the BWM was used to find out the weights of the evaluation criteria. DES was applied to evaluate 

the performance of the strategies relative to the evaluation criteria. Initially, a base simulation 

model was constructed in which none of the lean manufacturing strategies were implemented. 

Subsequently, for each lean strategy, a simulation model was developed by introducing specific 

changes to the base model, and under each strategy, six types of scenarios were designed and 

executed. 

The weighting results indicated that the total cost criterion is the most significant factor in 

evaluating lean manufacturing strategies. The VIKOR method results are summarized as follows: 

the setup time reduction strategy ranks first under scenarios of low production capacity with one 

shift and low production capacity with two shifts, while the batch size reduction strategy ranks first 

under scenarios of medium production capacity with one shift, high production capacity with one 

shift, medium production capacity with two shifts, and high production capacity with two shifts. 

The results obtained from the present research are applicable and generalizable to the natural stone 

industry, similar sectors such as the tile and ceramics industry, and in contexts where the objective 

is to evaluate lean manufacturing strategies. 

For future research, the following suggestions are provided: 

 In this study, only those lean manufacturing strategies that could be modeled using 

simulation were evaluated. Therefore, researchers are advised to consider other lean 

strategies as well. 
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 This research applied DES and integrated MCDM methods to evaluate lean manufacturing 

strategies in the natural stone industry. Researchers can utilize these methods to assess lean 

strategies in other industries and compare their results with those obtained in this study. 

 The BWM was used for weighting the lean manufacturing evaluation criteria, and the 

VIKOR method was used for ranking the strategies. Researchers can apply other MCDM 

methods and compare their results with the findings of this study. 
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