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Objective: This research aims to propose a large-scale vehicle routing model for the 
distribution network of a food industry product and apply the model in a real-world case 
study.  

Methods: A mathematical model is formulated to minimize the total variable 
transportation costs.  Considering the complexity of the model, a constrained clustering 
algorithm is used to decompose the problem. Then, vehicles are assigned to demand 
clusters according to their capacity. Finally, each cluster's symmetric traveling salesman 
problem (TSP) is solved using a genetic algorithm. The parameters of the proposed 
genetic algorithm were calibrated based on its widespread application in solving 
symmetric TSPs. A conservative approach was adopted to ensure the solution's validity 
by evaluating a worst-case scenario considering the highest node demands.   

Results: By applying the proposed algorithm to the case study, over 2,000 demand 
nodes across Tehran were grouped into 91 clusters. Then, based on the demand level of 
each cluster, the vehicles are assigned, consisting of 26 small and 65 large cars. Within 
each cluster, the assigned vehicle followed an optimized route among the nodes, 
designed based on the optimal tour generated by solving the cluster-specific TSP using 
the genetic algorithm, and then returned to the central warehouse.  

Conclusion: Comparing the results with the current situation, the size of the proposed 
transportation fleet showed a 40% reduction. Additionally, reducing fleet size and 
optimizing the routes improved the total distribution network costs by 25%. Given the 
model's computational efficiency, this improvement is considered satisfactory. 
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Introduction 

Food security is a critical global issue directly connected to various sustainable development 

goals (SDGs), including poverty alleviation, hunger eradication, health and wellness, climate 

change, and land conservation (Pandey & Pandey, 2023). The food supply chain is key to 

ensuring food security and maintaining societal sustainability within this context. Due to the 

perishable nature of food products, efficient design and management of distribution networks, 

particularly in densely populated urban areas, is essential for minimizing waste, preserving 

quality, and improving timely access to food resources (Marzban et al., 2023). In recent years, 

increased public awareness of the environmental damage caused by fossil fuel consumption has 

pushed organizations to develop green transportation systems to minimize emissions from 

logistics operations (Asgharizadeh et al., 2017). From an economic standpoint, distribution and 

logistics networks account for 5% to 20% of a country's GDP and approximately 20% of the total 

cost of goods sold (Andrejić et al., 2018). According to the International Energy Agency (IEA), 

about 20% of Iran’s total CO₂ emissions in 2022 resulted from transportation-related fossil fuel 

consumption. Global reports indicate that most carbon monoxide (CO) pollution in Arctic 

Council member countries originates from transportation. As shown in Figure 1, the green bar 

highlights the significant difference between transportation and other sources. The data derived 

from this specific world region may also be generalized to the whole globe. 

 

Figure 1. Emission rates of air contaminants among Arctic Council member countries (Valriberas, 

2023) 

Another study on greenhouse gas emissions reveals that the amount of GHGs generally 

released by food transportation accounts for 19% of emissions from the food industry. In the case 

of fruit and vegetables, the emission of transportation (36%) is approximately twice the amount 

released during their production (19%) (Li et al., 2022; European Commission report, 2023). This 
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report concentrates on pollution caused by food transportation from farms to manufacturing and 

consumers. Sustainable development, rooted in the 1970s (Ruggerio, 2021), is based on three 

pillars—economic, social, and environmental—and aims to balance them in development 

processes (Mensah & Casadevall, 2019; Mangukiya & Sklarew, 2023). In the food industry, 

sustainability is defined by the pursuit of balance among economic productivity, environmental 

health, and social justice (Prasanna et al., 2024). Achieving sustainable development is 

unattainable without sustainable production and distribution (Selvan et al., 2023). Sustainable 

distribution is any combination of transportation tools and practices that causes minimal harm to 

the pillars of sustainability (Sommerauerova et al., 2018). Consequently, incorporating 

sustainability principles into the design of distribution networks is increasingly vital (Lin et al., 

2014; Ganji et al., 2020). As a significant component of the supply chain, the distribution stage 

significantly influences the food industry's environmental, economic, and social dimensions. 

Sustainability in the food sector requires a holistic perspective that balances economic viability, 

environmental integrity, and social equity (Prasanna et al., 2024). Therefore, efficient distribution 

network design and management, particularly in urban settings, are crucial for improving the 

sustainability and efficiency of food systems (Marzban et al., 2023). 

Distribution networks act as the interface between producers and consumers, playing a 

decisive role across the supply chain. Vehicle routing is one of the primary and ongoing problems 

of distribution networks optimization (Kazemi et al., 2021). A well-designed routing plan is 

crucial for improving distribution issues, directly affecting delivery speed, timing, and cost 

(Zhang et al., 2021).  

Choosing a suitable and appropriate path for vehicles used for goods distribution is a strategic 

and vital subject. The Vehicle Routing Problem (VRP) is a complex combinatorial optimization 

problem aimed at finding feasible routes for a fleet of vehicles that deliver goods or services from 

a depot to a set of customers (Shi, 2024). With a limited capacity, each vehicle must return to the 

depot after completing its tour, and each customer is served by exactly one vehicle. Practically, 

this problem seeks to minimize total travel distance (Baker & Ayechew, 2003). VRP extends the 

traveling salesman problem (TSP) by considering multiple vehicles and deliveries. Over time, 

numerous VRP variants have emerged to address real-world complexities such as traffic 

congestion, time windows, dynamic demand, and heterogeneous fleets (Braekers et al., 2016). 

VRP solution techniques are generally categorized into three types: exact methods (e.g., 

branch and bound, minimum spanning tree, branch and cut, dynamic programming), heuristics 

(e.g., k-opt, nearest neighbor), and metaheuristics (e.g., genetic algorithms, simulated annealing, 

tabu search, particle swarm optimization, ant colony optimization) (Toth & Vigo, 2002; 2014). 

As problem size increases, exact methods become impractical for timely solutions, and heuristic 

or metaheuristic approaches—offering a balance between solution quality and computational 
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efficiency—become preferable (Alshaar & Awad, 2019). Given the scale, complexity, and 

sensitivity of distribution networks in the real-world food industry, using robust models to handle 

the uncertainty and intelligent algorithms to deal with their complexity is critically important. 

Based on these considerations, the current study focuses on optimizing the product distribution 

network of an Iranian food production company using a heterogeneous fleet. Currently, the 

company operates 151 vehicles, incurring annual transportation costs of over 55 billion IRR. 

Considering the large number of customers, the current study formulated a large-scale vehicle 

routing model and applied a multi-stage algorithm to solve it. First, customer nodes are clustered 

based on their demand and vehicle capacity. Then, an appropriate vehicle is assigned to each 

cluster. Finally, a TSP is formulated and solved for each cluster. 

The remainder of this study is organized as follows: Section 2 reviews the related literature in 

two distinct fields. Section 3 presents the mathematical formulation and introduces the novel 

model proposed in this study. In Section 4, a real-world case study is discussed. Section 5 

provides the discussion and conclusions, while Section 6 outlines the study's limitations. Finally, 

Section 7 offers recommendations for future research. 

Literature Background 

From a theoretical standpoint, research on the VRP can be divided into two categories: (1) studies 

that focus on developing various VRP models under different assumptions and characteristics 

(Campbell & Wilson, 2014), and (2) studies that propose different solution methods (Alesiani et 

al., 2022). Practically, VRP has wide applications. Vehicle assignment and routing models have a 

long-standing presence in the literature. In the food industry, notable studies include Chen et al. 

(2020), Giallanza and Puma (2020), Yagmur et al. (2021), Torabzadeh et al. (2022), and Wang et 

al. (2023). 

Numerous studies on vehicle routing can be classified based on model type and the algorithms 

used. Eksioglu et al. (2009) conducted a comprehensive review, categorizing prior studies based 

on study type (theoretical, applied, or review), scenario features (e.g., number of stops, loading 

constraints, customer demand level), physical features (e.g., network design, customer location, 

number of depots), and data types. Building on this, Braekers et al. (2016) extended this 

classification framework to cover studies published between 2009 and 2016. 

Generally, review studies in this field have contributed to developing base VRP models from 

various angles and aspects. For instance, Gansterer and Hartl (2018) reviewed collaborative VRP 

studies. Other researchers, such as Koç et al. (2020), Maghdani et al. (2021), and Asgari and 

Mirzapur Al-Hashem (2021), have focused on categorizing studies related to green VRP. 

Konstantakopoulos et al. (2022) reviewed VRP-related articles and distribution algorithms 
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comprehensively. Sar and Ghadimi (2023) extended this review to reverse logistics operations. 

Alzate et al. (2024) examined VRP studies focusing on sustainability dimensions since 2013. 

Large-scale VRPs are considered extremely complex, making them nearly impossible to solve 

using exact algorithms. Qin et al. (2021) proposed a mixed-integer linear programming model for 

routing a predefined heterogeneous fleet to minimize travel time; however, their method failed 

for large-scale problems. For such cases, they recommended a metaheuristic approach based on 

reinforcement learning. 

Han (2023) addressed multi-depot VRPs in large logistics centers using a framework based on 

parallel OCS-k-means clustering and large-scale neighborhood search in a distributed computing 

environment, which doubled convergence speed compared to parallel algorithms. Li et al. (2022) 

developed a three-stage framework that showed strong performance in real—world applications, 

including customer clustering, cluster merging, and path search. Alesiani et al. (2022) proposed a 

constrained clustering algorithm for capacitated VRPs that balanced demand across clusters and 

managed complex constraints, performing well on problems with up to 16,000 nodes. 

Table 1 summarizes recent large-scale VRP studies and situates the present study within this 

research landscape. 

Table 1. Summary of reviewed studies 
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According to Table 1, most research on large-scale vehicle routing has focused on single-

objective problems aimed at minimizing cost, and researchers have primarily concentrated on 

developing efficient algorithms to solve such problems. Consequently, most studies have been 

organized around the classical VRP model. Even in multi-objective studies, cost relative to travel 

distance is consistently included as a primary objective, and occasionally, sustainability-related 

goals—such as delay penalties (related to customer satisfaction) or traffic reduction (via fewer 

vehicles)—have been considered. The innovation of the present study lies in modeling a 

heterogeneous fleet while simultaneously minimizing both transportation costs and 

environmental pollution from fuel consumption, which is a large-scale problem. To address the 

model’s complexity and make it solvable, a three-stage decomposition algorithm is proposed: (1) 

constrained clustering of demand nodes based on fleet capacity, (2) vehicle assignment, and (3) 

application of a genetic algorithm to solve the problem within each cluster. Finally, the proposed 

model and algorithm are applied to a real-world case. According to the literature review, the main 

contribution of this study is its focus on large-scale VRP modeling and solution. 

Materials and Methods 

Mathematical Model 

The investigated problem involves the distribution network of a food production company in 

Tehran. The company distributes products via a fleet of two vehicles—light and heavy—from a 

central warehouse on the city's outskirts. Deliveries are made twice weekly, on Sundays and 

Wednesdays, and the proposed model pertains to each delivery cycle. 

Formally, the problem can be defined as a large-scale vehicle routing problem over a graph G 

= (V, A), where V = {0, 1, ..., n} represents the set of nodes (demand points/customers), and A 

represents the set of arcs. Each node j has a non-negative demand dj. The vehicle routing problem 

in this study is considered symmetric, i.e., 𝑐𝑖𝑗 = 𝑐𝑗𝑖, where 𝑐𝑖𝑗 is the cost or distance of travelling 

from node i to node j. A heterogeneous fleet comprising K types of vehicles is available, each 

with a specific capacity, per-kilometer travel cost, and fuel consumption. The objective is to find 

the shortest Hamiltonian tour starting and ending at the depot, visiting each node exactly once 

(Stavropoulou, 2022). 

 Assumptions of the Mathematical Model: 

1. Vehicles start their tours from the depot. 

2. Only one vehicle is assigned per tour. 

3. Each customer is visited exactly once. 

4. Each tour ends at the depot. 
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5. Multiple types of vehicles with varying capacities are available. 

6. Customer demand is considered stochastic, defined over an interval based on historical 

data. 

7. The model is designed for a single ordering cycle. 

The notations used are as follows. 

Sets and Indices 

i, j  demand nodes,  𝑖 ∈ {0,1, … , 𝑛} 

k  Set of vehicles,  𝑘 ∈ {1,2, … , 𝐾} 

Parameters:     

𝑑𝑖𝑗 Distance from node i to node j 

𝑞𝑗 Demand of customer node j 

𝑐𝑘 Variable travel cost per kilometer for vehicle type k 

𝑓𝑘  Fuel consumption rate per kilometer by vehicle type k 

G Per unit of fuel cost 

𝑄𝑘  Maximum capacity of vehicle type k 

Decision variables  

𝑞𝑖𝑗𝑘  Load transported by vehicle k from node i to node j 

𝑥𝑖𝑗𝑘  
{
1, if vehicle type 𝑘 travels from node 𝑖 to node 𝑗
0,                                        otherwise                              

   

𝑦𝑗𝑘  
{
1, if vehicle type 𝑘 serves demand node 𝑗 
0,                                      otherwise                           

 

𝐶𝑎𝑝𝐼𝑢𝑖 Auxiliary continuous variable (real number) 

The mathematical model of the problem is formulated as follows. 

(1) 𝑀𝑖𝑛 ∑ ∑ ∑(𝑐𝑘 + 𝑓𝑘 ∙ 𝑔)𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘

𝑚

𝑘=1

𝑛

𝑗=0

𝑛

𝑖=0

 

(2) ∑ 𝑥𝑖𝑗𝑘 =

𝑛

𝑖=0
𝑖≠𝑗

∑ 𝑥𝑗𝑖𝑘

𝑛

𝑖=0
𝑖≠𝑗

   ∀𝑘 ∈ 𝐾. ∀𝑗 ∈ 𝐼 

(3) ∑ 𝑥𝑖𝑗𝑘 =

𝑛

𝑖=0

𝑦𝑗𝑘      ∀𝑘 ∈ 𝐾.   ∀𝑗 ∈ 𝐼 

(4) ∑ 𝑦𝑗𝑘 = 1

𝐾

𝑘=1

     ∀𝑗 ∈ 𝐼 ∖ {0} 

(5) ∑ 𝑥0𝑗𝑘 ≤ 1

𝑛

𝑗=1

   ∀𝑘 ∈ 𝐾  
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(6) 𝑢𝑖 − 𝑢𝑗 + 𝑛 ∑ 𝑥𝑖𝑗𝑘 ≤ 𝑛 − 1

𝑚

𝑘=0

       ∀𝑖 ∈ 𝐼. ∀𝑗 ∈ 𝐼 ∖ {0}  

(7) ∑ 𝑞𝑗 ∙ 𝑦𝑗𝑘 ≤ 𝑄𝑘

𝑛

𝑗=1

   ∀𝑘 ∈ 𝐾 

(8) ∑ 𝑞𝑖𝑗𝑘 − ∑ 𝑞𝑗𝑖𝑘

𝑛

𝑖=1

𝑛

𝑖=0

= 𝑞𝑗 ∙ 𝑦𝑗𝑘    ∀𝑘 ∈ 𝐾.   ∀𝑗 ∈ 𝐼 ∖ {0} 

(9) 
𝑞𝑖𝑗𝑘 ≤ 𝑄𝑘 ∙ 𝑥𝑖𝑗𝑘    ∀𝑖 ∈ 𝐼. ∀𝑗 ∈ 𝐼. ∀𝑘 ∈ 𝐾   

(10) 
𝑞𝑖𝑗𝑘 ≥ 0      ∀𝑖 ∈ 𝐼. ∀𝑗 ∈ 𝐼. ∀𝑘 ∈ 𝐾   

(11) 
𝑢𝑖 ≥ 0      ∀𝑖 ∈ 𝐼 

(12) 
𝑥𝑖𝑗𝑘 ∈ {0.1}   ∀𝑖 ∈ 𝐼. ∀𝑗 ∈ 𝐼. ∀𝑘 ∈ 𝐾 

(13) 
𝑦𝑖𝑘 ∈ {0.1}   ∀𝑖 ∈ 𝐼. ∀𝑘 ∈ 𝐾 

The objective function in Equation (1) aims to minimize the total transportation cost of the 

fleet to serve customer demands, considering both the rental cost per kilometer and fuel 

consumption for the used vehicles. Minimizing this cost corresponds to identifying the shortest 

route in the network under the given constraints. Constraints (2) to (13) are defined to represent 

the feasible space of the problem. Constraints (2) to (6) are part of the classical VRP formulation 

(Toth & Vigo, 2002). Constraints (2) and (3) ensure that the exact vehicle that enters a node also 

exits it. Constraint (4) ensures that each node is visited exactly once. Constraint (5) ensures that 

once a vehicle is assigned to a node, no other vehicles are assigned to that same node. Constraint 

(6) eliminates sub-tours, while Constraint (7) reflects the vehicle capacity limit. Constraints (8) to 

(10) further reinforce this by regulating the flow of loads between nodes. Specifically, Constraint 

(8) balances incoming and outgoing flow, stating that the difference in vehicle load before and 

after visiting a node should equal that node's demand. Constraint (9) prevents load transfers over 

unused paths to avoid mismatched deliveries. Lastly, Constraint (10) ensures non-negativity of 

vehicle loads. 

Solution Approach 

Given the previous studies, the problem is classified as NP-hard. Therefore, an exact solution is 

impractical for large-scale instances. Most existing research addresses problems with fewer than 

1,000 nodes. For this reason, a three-stage heuristic algorithm, illustrated in Figure 2, is proposed 

to solve the problem at the considered scale. 
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Figure 2. Three-Stage Heuristic Algorithm for Solving the Research Model 

Based on previous studies, many researchers have employed clustering and decomposition 

techniques to reduce problem complexity. Similarly, the present study adopts this approach for 

problem-solving, with the subsequent sections detailing the procedural steps (Yeh et al., 2024). 

Step 1: Constrained Clustering 

The first step in making the model solvable involves decomposing it into smaller subproblems. In 

this phase, demand nodes are clustered such that the total demand of each cluster can be served 

by a single light or heavy vehicle. As mentioned before, VRP is an NP-hard problem. A 

Clustered Vehicle Routing Problem (CluVRP) approach is adopted to solve it. This was first 

introduced by Sevaux and Sorensen (2008) in the context of a real-world distribution network 

design problem. The initial step in solving CluVRP is generating clusters from demand nodes. 

Due to the high computational complexity of clustering algorithms, repeated execution over 

many scenarios can lead to increased computation time, which reduces the model’s practical 

applicability. Therefore, based on the clustering approach of Mirzapur Al-Hashem and Asgari 

(2023), this study assumes a worst-case scenario in which every demand node places at least one 

order, and no node in the network is demand-free. A solution that satisfies this worst-case 

condition will also be valid for all other scenarios. 

Clustering is based on geographic coordinates (latitude and longitude) and demand levels. The 

first step is determining the minimum number of clusters (k) so that each cluster's total demand is 

less than a large vehicle's capacity. 

The clustering algorithm used in this study is a constrained version of the k-means algorithm. 

Alesiani et al. (2022) proposed an algorithm incorporating the constraint on total cluster demand. 

In each iteration, for a given number of clusters, a k-means problem is solved. The key distinction 

here is that when evaluating whether to assign a demand node i to cluster k (based on the shortest 

distance to the cluster centroid), an additional constraint is enforced: the total demand of the 

cluster, after including node i, must not exceed the capacity of a large vehicle. Formally: qi + Σ (i' 

∈ k) qi' ≤ U1 

Constrained 
Clustering

Vehicle Assignment
Solving the 

Traveling Salesman 
Problem
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If this condition holds, node i is added to cluster k. Otherwise, cluster k is removed from the 

list of candidate clusters for node i. The pseudocode for this constrained clustering algorithm is 

illustrated in Figure 3. This figure, dik denotes the distance between node i and cluster k's center. 

In Step 5, demand nodes are sorted based on their distance to cluster centers. Algorithm 2 

determines the feasibility of assigning nodes to clusters under the demand constraint. The cluster 

center coordinates are updated upon assigning a customer to a cluster. Algorithm 2 terminates 

when all demand nodes are assigned. Algorithm 3 involves updating the cluster centers after 

removing assigned customers and repeating Steps 1 and 2 until convergence is achieved across 

two consecutive iterations. If some customers remain unassigned or clusters contain no assigned 

customers, the number of clusters k is adjusted, and the steps are repeated. This iterative process 

guarantees the assignment of all demand nodes to clusters while respecting the demand 

constraints. 

Algorithm 1: Obtaining the Sorted List of Customers (Demand Nodes): 

1: input: {𝑑𝑖,𝑘}, 𝑈′ 

2: for 𝑖 ∈ 𝑈′ do 

3: Compute Di by solving min
𝑘

𝑑𝑖,𝑘 

4: set P = (b1, …, bn) such that 𝐷𝑏1
≤ ⋯ ≤ 𝐷𝑏𝑛

 

5: output: P = (b1, …, bn)  

Algorithm 2: Assigning Demand Nodes to Clusters Starting from Customer b1 in 

the Priority Queue: 

1: input: {𝑢𝑖}, 𝑊, 𝑅, {𝜇𝑖}, 𝐾, {𝑐𝑘}, {𝑑𝑖,𝑘}, 𝑈 

2: Execute Algorithm 1 to compute P 

3: for 𝑏𝑖 ∈ 𝑃 do 

4: set 𝐶𝑏𝑖
= 𝐾 

5: while 𝑏𝑖 ∈ 𝑈 ∧ 𝐶𝑏𝑖
≠ ∅ do 

6: set 𝑘∗ = arg min
𝑘

𝑑𝑏𝑖,𝑘    

7: if |𝑎𝑘∗| < 𝑊 ∧ 𝑑𝑏𝑖,𝑘∗ ≤ 𝑅 ∧ 𝜇𝑏1
+ ∑ 𝜇𝑗𝑗∈𝑎𝑘∗ ≤ 𝑄 then 

8: 𝑎𝑘∗ ← 𝑎𝑘∗ ∪ {𝑏𝑖} 

9: 𝑐𝑘 ≔
1

|𝑎𝑘∗|
∑ 𝑢𝑖𝑖∈𝑎𝑘∗  
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10: 𝑈 = 𝑈\{𝑏𝑖} 

11: else 

12: 𝐶𝑏𝑖
← 𝐶𝑏𝑖

\{𝑘∗} 

13: output: {𝑎𝑘}, {𝑐𝑘} 

Algorithm 3: Constrained Clustering Algorithm 

1: while 𝑎𝑘 ≠ ∅∀𝑘 ∈ 𝐾 ∧ 𝑈 ≠ ∅ do 

2: 𝑐𝑘~𝑈(𝑢1, … , 𝑢𝑛), ∀𝑘 ∈ 𝐾, such that 𝑐𝑘 ≠ 𝑐𝑗 , ∀𝑗 ∈ 𝐾  

3: 𝑈 ← {1, … , 𝑛} 

4: 𝑎𝑘 ← ∅, ∀𝑘 ∈ 𝐾 

5: while ({𝑎𝑘}1
|𝐾|)

previous
≠ ({𝑎𝑘}1

|𝐾|) do 

 6: ({𝑎𝑘}1
|𝐾|)

previous
← ({𝑎𝑘}1

|𝐾|) 

7: ({𝑎𝑘}1
|𝐾|) ← Alg. 2 

8: if 𝑈 ≠ ∅ then 

9: set |𝐾| ← |𝐾| + 1, if there are unassigned customers 

10: if ∃𝑘|𝑎𝑘 = ∅ then 

11: set |𝐾| ← |𝐾| − 1, if there are clusters without customers: 𝑎𝑘 =

∅, for some 𝑘 ∈ 𝐾 

12: output:  

Figure 3. Pseudocode of the Constrained Clustering Algorithm by Alesiani et al. (2022) 

Step Two: Vehicle Allocation 

After identifying the demand clusters, the next step involves allocating vehicles to each cluster. 

Considering that, in the present case study, the transportation fleet consists of two types of 

vehicles—small and large capacity—and that during the clustering phase, the demand size of 

each cluster was accounted for relative to vehicle capacities, vehicle allocation can thus be 

performed based on the total demand of the nodes within each cluster. 
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The proposed logic for vehicle allocation is as follows: 

If the total demand of the nodes in a cluster is less than the capacity of a small vehicle, one 

small vehicle is allocated to that cluster; otherwise, a vehicle with a larger capacity is assigned. 

Let qj denote the demand at node j, and Qk represent the capacity of vehicle type k. Suppose 

the demand points have been grouped into C clusters. Among all vehicles whose capacities 

exceed the aggregate demand of the cluster in question, the vehicle with the smallest adequate 

capacity is allocated to that cluster. 

Step Three: Solving the TSP 

Following the clustering of demand nodes and vehicle allocation for each cluster, the research 

problem is reduced to solving k symmetric TSPs, where k is the number of clusters. After the 

first two steps, k clusters exist, each comprising several demand nodes to be serviced by a single 

vehicle (salesman). A genetic algorithm is employed to solve each TSP. The pseudocode of the 

Genetic Algorithm utilized for addressing the problem is illustrated in Figure 4. 

 

[Initialization] 

[Initialize Parameters] (PopSize, NumGen, Pc, Pm, StopCriteria, …) 

[Initialize Parameters] Generate PopSize chromosomes randomly. 

[Evaluation] Evaluate the fitness of each chromosome. 

[New Generation] 

Repeat 

[Selection] Select parents based on the selection strategy. 

[Crossover] Produce (PopSize*Pc) of offspring with Crossover. 

[Mutation] Produce (PopSize*Pm) of offspring with Mutation. 

[Reproduction] Copy the remaining chromosomes based on elitism. 

 [Replacing] Place new offspring in the new population. 

 [Evaluation] Evaluate the fitness of new chromosomes. 

Until StopCriteria is met. 

[End] return the best solution in the final population. 

Figure 4. Pseudocode of the Genetic Algorithm 
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Results 

Case study 

The method is examined in a food manufacturing company to evaluate the proposed model and 

algorithm. The company produces a packaged protein product. This product is distributed 

through a central warehouse to 2,106 retail outlets in Tehran. The company’s transportation fleet 

consists of two types of vehicles: large and small. Deliveries are made twice weekly, on Sundays 

and Wednesdays, and the proposed model pertains to each delivery cycle. Customer demand data 

was collected over six months, and based on Chebyshev’s inequality, the confidence interval for 

the demand at each node was estimated. Following a conservative approach, the model was 

solved using the upper bound of this confidence interval. Additionally, a heterogeneous fleet list 

for the company was obtained, comprising 151 vehicles, including trucks and vans. The 

subsequent section outlines the step-by-step application of the proposed algorithm to the 

problem. 

Step 1: Clustering Demand Nodes 

Given the large scale of the problem under consideration, as previously noted, the first step 

involves clustering the demand nodes to reduce problem complexity by dividing it into smaller 

subproblems. The constrained clustering algorithm illustrated in Figure 3 was employed to 

generate these clusters. The inputs to this algorithm are the geographical coordinates (latitude and 

longitude) of the demand nodes, alongside a constraint on the demand of each cluster. 

Specifically, this constraint ensures that the total demand within each cluster does not exceed the 

maximum capacity of a large vehicle. The algorithm was coded and executed using MATLAB 

software. Upon running the algorithm, 91 clusters of demand nodes were obtained as shown in 

Figure 5. According to the clustering results, the smallest cluster contains only one demand node, 

while the most significant cluster comprises 49 demand nodes. 

 

Figure 5. Clustering of Demand Nodes in Tehran 
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Step 2: Vehicle Allocation to Clusters 

According to the designed algorithm, vehicle allocation to the clusters is carried out in the second 

step. The transportation fleet comprises two types of vehicles: large-capacity vehicles and small-

capacity vehicles. To simplify the solution of the large-scale heterogeneous vehicle routing 

problem with uncertain demand, vehicle allocation in this step is based on the total demand of 

each cluster. According to the proposed rule, if the total demand of the nodes within a cluster is 

less than the capacity of a van, one small vehicle is assigned to the cluster; otherwise, one large 

vehicle is allocated. In total, 26 small vehicles with a capacity of 70 boxes and 65 large vehicles 

with a capacity of 280 boxes are required for the network. 

Step 3: Solving the TSP in Each Cluster 

In the third step of the proposed algorithm, the symmetric TSPs are solved for each cluster. 

Following the first two steps of the algorithm, 91 symmetric TSPs—one for each cluster, each 

consisting of several demand nodes and one vehicle—are solved. A genetic algorithm is 

employed to address the TSP in the obtained clusters. In this algorithm, the chromosomes 

representing the solution for a problem with n cities are n-length strings, where each gene 

corresponds sequentially to the index of the visited city. An example chromosome is illustrated in 

Figure 6. 

m … j i … Q P 

n  𝑘 + 1 k … 2 1 

Figure 6. Chromosome Representation of the Solution in the Genetic Algorithm 

In Figure 6, cities numbered p and q are visited first and second, respectively, while cities i 

and j are visited at positions k and k + 1, respectively. Essentially, the chromosome represents the 

sequence of cities visited in order. 

For applying the genetic algorithm in solving these problems, the algorithm parameters were 

set considering Hakimzadeh Abyaneh (2012) as follows: 

 Population size: 50 

 Crossover rate: 30% 

 Crossover operators: Three crossover operators generated offspring, selecting the best-

performing operator via a roulette wheel selection mechanism. 

 Mutation operators: Three types of mutation operators, including the competency-based 

operator, the ordered operator, and the partially mapped operator, were employed. The 

roulette wheel selection was chosen for superior operator selection. 
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 Mutation rate: 5%, with 35% of selected solutions undergoing swapping mutation, 20% 

undergoing inversion mutation, and 45% being replaced. 

 Elitism: Apart from the percentage of solutions in each generation subjected to crossover 

and mutation, the remaining top-performing solutions were carried over to the next 

generation. 

The TSP is solved for each cluster. Then, the optimal tour comprising the visiting sequence of 

demand nodes is achieved for each cluster. For instance, the optimal tours for clusters 2 and 69 

are illustrated in Figures 7(a) and 7(b), respectively. These tours represent the sequence of visits 

by the vehicle dispatched from the central warehouse to the respective clusters. 

  
(a) (b) 

Figure 7. Optimal Tour for Clusters: (a) Cluster 2, (b) Cluster 69 

The total distance traveled across all clusters for each order fulfillment cycle is estimated to be 

2,645.53 kilometers. Regarding the scale of the problem, presenting the routes for all clusters is 

impractical; therefore, the distribution of distances traveled per cluster is depicted as a histogram 

shown in Figure 8. Figure 8 reveals that the frequency distribution of cluster travel distances 

follows a skewed distribution with a peak frequency around 10 kilometers. In fact, for most 

clusters, the traveled distance is symmetrically centered around 10 kilometers. However, 

considering the vast area of metropolitan Tehran, there is one cluster located at a significantly 

greater distance from the central warehouse, which requires a travel distance of approximately 85 

kilometers for delivery. 

As can be seen, the demand of the majority of clusters is met within a travel distance of less 

than 10 kilometers, which indicates a reduction in the overall travel distance within Tehran. This 

reduction will lead to enhanced distribution network efficiency in light of urban traffic 

conditions. 
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Figure 8. Histogram of Distance Traveled Within Clusters 

The execution time of each of the three main stages was measured separately to assess the 

computational efficiency of the proposed algorithm. The results are categorized as follows:  

 The clustering of demand nodes was completed in less than 30 seconds while using the 

developed constrained clustering algorithm in MATLAB.  

 Vehicle assignment to clusters incurred a negligible computational cost and was executed 

approximately immediately (under 1 second).  

 Finally, a symmetric TSP was solved using a genetic algorithm for each of the 91 clusters. 

Due to variations in cluster sizes (ranging from 1 to 49 nodes), the solution time for each 

TSP varied between 1 and 8 seconds, respectively. On average, the entire third step was 

completed in approximately 300 to 400 seconds across multiple runs.  

Thus, the total runtime of the proposed algorithm for the case study lasted about 5 to 7 

minutes, indicating its feasibility for real-world, large-scale applications. 

Discussion and Conclusion 

In many manufacturing companies, the distribution network design is assumed to be a critical 

component of operational and financial performance. It has a significant dual effect on both costs 

and revenues. This issue becomes even more highlighted in the context of food products, due to 

their limited shelf life. Route optimization in supply chains has long been recognized as one of 

the most vital components of green SCM. 

A three-stage heuristic algorithm is developed to solve a large-scale supply chain routing 

problem for a real-world case study. The mathematical model incorporating over 2,000 demand 

nodes was formulated to minimize transportation and fuel costs. Regarding the problem’s scale 
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and complexity, obtaining exact solutions through deterministic methods is not feasible within a 

reasonable timeframe. For this purpose, a heuristic solution approach was proposed. 

As outlined, in the first step, to reduce effectively the dimensions of the original problem, 91 

clusters were formed. Then, according to the algorithm's output, the company’s original fleet—87 

large and 64 small vehicles—was reduced to 91 vehicles, specifically 65 large and 26 small ones. 

These two stages of the algorithm alone reduced fleet size from 151 to 91 vehicles, which can 

significantly decrease fixed and variable transportation costs. 

In the third stage, the problem was divided into multiple symmetric TSPs. The total cost of 

dispatching vehicles from the central warehouse to cluster centers and performing intra-cluster 

deliveries was estimated at approximately 459 million IRR per distribution cycle, considering 

standard vehicle rental rates and fuel consumption. Compared to the current operational cost of 

575 million IRR, the estimated figure represents a 25% cost reduction. 

A key novelty of this research is introducing a novel distribution system for the food supply 

chain that utilizes a heterogeneous fleet in a large-scale setting under uncertain demand 

conditions. It is analyzed via a worst-case scenario approach and accounting for fuel 

consumption. Moreover, due to the problem’s complexity, a hybrid metaheuristic algorithm (a 

genetic algorithm) was proposed to solve the mathematical model. The model ensures solution 

feasibility under all demand scenarios by incorporating worst-case analysis. 

This study is subject to several limitations, primarily from its assumptions and modeling 

scope.  At first, in the modeling framework, each delivery tour is assumed to be served by a 

single vehicle, with no provision for inter-cluster vehicle reallocation. Also, the model assumes a 

specific network comprising one central warehouse and many retail points, regardless of the 

possibility of expanding the distribution network by adding supplementary warehouses. This 

model treats key parameters such as inter-node distances as constant, without incorporating 

traffic-related constraints or their impact on travel times. Although customer demand data are 

inherently stochastic, the model is solved under a worst-case scenario by assuming maximum 

demand levels. This approach ensures solution feasibility under all potential realizations and 

guarantees robustness; however, it emphasizes primarily solution resilience over model 

flexibility. Here, the problem is formulated and solved for a single period. Incorporating temporal 

variations and extending the model to a multi-period setting could provide deeper insights and 

improve practical applicability. Finally, the model could observe explicit objectives or constraints 

related to customer satisfaction levels or order fulfillment rates. These concepts are increasingly 

important in modern logistics systems. 

Given the aforementioned limitations, several promising directions for future studies are 

suggested: first, introducing flexibility in vehicle allocation across clusters could significantly 
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improve fleet utilization and operational efficiency. Modeling and solving integrated location-

routing problems that determine the optimal number and placement of warehouses in the network 

can be suggested to cover the network limitations. Designing routing algorithms that explicitly 

account for urban traffic conditions and their impact on travel time variability between nodes is 

likely another issue for future research. Also, implementing robust models based on less 

conservative frameworks, e.g., the Ben-Tal and Nemirovski approach, the Bertsimas and Sim 

methodology, or data-driven robust optimization techniques, can lead to a more accurate capture 

of demand uncertainty. Finally, developing multi-objective models that simultaneously consider 

logistical efficiency, accessibility, and customer satisfaction metrics can enhance the proposed 

model's adaptability to practical situations. 
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